Application Remote Control

Slide One

Hello ..

Slide two

What are we going to cover

· Mutex

· Executing another process

· Custom Messaging

· User the above with CGI to control an application on a server

Slide 3

Mutexes (or is it Muti?)

· What is a Mutex.

· A mutex is a single instance object. What this means is that only one “process” can own the object at any one given time. If this “process” owns the object then its “owned” processes can access it (hence it is not the same as single flag semaphore), but no other process outside the owning process can access it, unless given permission by the owning process!
· Railway line if needed…explain single line semaphore and mutli-line mutli-operator mutex…
· Why do we use them

· Mutex(es) are normally used to protect shared resources. For instance if you have a printer, a mutex can be used to ensure that only one “process” has access to the printer at any one time.

· This doesn’t particularly mean “one thread”, but one process. Thus, in our printer example again, the main thread can obtain the mutex (and probably the handle to the printer) and then pass it around it’s own threads as it sees fit.

· In our use we’re taking our “resource” to be the application itself. In other words, as only one “process” can own the mutex at any one time, our application (process) will acquire a mutex so another instance process) can’t.

· How Does it work

· A mutex is an object that can (or may not) exist. It has two states, owned and not owned (signalled and non-signalled, and no, I can’t remember which is which 8o)

· We create a mutex by giving it a name. (You can create unnamed ones but that’s your decision and I wouldn’t recommend it). We obviously give it a name to identify it, but this is also used should the mutex already exist.

· SHOW CODE mainapp.dpr MutexHandling.pas

· CreateMutex returns either a new mutex object or the one that exists with the given name.

· Parameters

· lpMutexAttributes. W95/8 meaningless, NT it’s an lpSecurityDescriptor (which I haven’t a clue about *o)

· bInitialOwner. Simply true or false, usually false just in-case someone else owns it…

· lpName. a UNIQUE name. Don’t pick ‘Form1’ pick ‘Jon’s unique form one mutex’

· Once we have the mutex (you can check for success…) we then immediately follow this with a call to WaitSingleObject

· Parameters

· The mutex handle we’ve got

· a timeout. In our case we call it with 0 to say “we want it now”

· The return from WaitSingleObject is one of the following,

· WAIT_TIMEOUT

· Someone else owns the object…to us meaning our application already has an instance

· WAIT_FAILED

· The call failed, (most likely an invalid mutex). Not safe to assume the mutex is signalled nor non-signalled

· WAIT_ABANDONED

· This is the interesting one. In our context it’s meaningless we’re not actually waiting around for something else to happen. However, say we had a timeout of 20 seconds, we would either get the mutex straight away or be waiting for another process to release it.

· In this context, WAIT_ABANDONED means that the thread that currently owns the object terminated without releasing it, so we can have it. If you only use your own mutexes then this should never happen, but …

· WAIT_OBJECT_0

· This is success. We have the mutex, (within the specified timeout) and so know that we can run.

· In our code…
· You’ll notice I have this in a function, in a unit on it’s own. Our result is true or false, and we take a handle as a parameter.

· How do we use this…

Slide four

Good Use of Singleton Muties

· Always try to use the mutex before your application fully instantiates

· If you have an application that is going to take a lot of say database creation we want to check before we start

· Always…ALWAYS release the mutex.

· Wrap everything in a call to a try/finally

· code (mainapp.pas)

· So you’ll notice we have a handle (MyMutex line 13) and we pass this into our CheckForMutex (line 21). Our return value is “True” if we got the mutex, false otherwise.

· If false we jump straight through to the finally, note that we don’t need a valid handle to call ReleaseMutex or CloseHandle.

· If True, we allow the application to run.

In Practice…

Run application D:\UKBUG\Meetings\CGI-BIN\mainapp.exe

Run the other from within Delphi

(Don’t forget the timer…more of which later)

Slide five

Executing another application

Simply we use shell execute.

Project1.exe “Start” Button1Click handler

show em…

That easy…

Slide Six

Custom Messages

· What is a custom messaging?
· When I described this session I said “using mutexes and Events”. To me a message is an event, and a custom message enables us to define truly custom events.
· You’re all aware that you can send a WM_CLOSE using SendMessage to a particular window, and it should close down. With custom messaging, we in effect extend the WinAPI messaging to have extra types of “event”.
· Don’t confuse this with the normal WM_USER + blah form of messaging you sometimes see within an application, we’re looking at creating messages at the system level, which we can send anywhere.
· Why are we going to use it?
· One of the objects of this system is to allow your application to send messages remotely, without the need to run off and find windows handles. As you’ll see in a moment, we’re going to broadcast our message to “the system”. As our principal aim is to close down only those application(or applications) which we want to, we can’t send a WM_CLOSE to all applications. Thus we need a specialised message.
· How do we use it?
· With ease. When I set out to do this I was stunned at how easy it actually is. First we create a unique message identifier, then register it with windows, then we can send it. When received at the application, we handle it in the normal custom message fashion.
· SHOW CODE mainapp JonsMessages.pas
· We define our messages. The best way to do this is with a const name, (nice and short), which can be passed into the function to have a nice long unique name.
· Notice…we do not define a numeric ident.
· We then have a simple function which we call that returns the ident found.
· To get an Ident we use RegisterWindowMessage. This is a nice and easy process because it handles all the work for us.
· We have a nice long unique string that we pass in, and this is “registered” against an Ident, (in the range 0xC000 through 0xFFFF). Once a message is registered in a windows session that ident is available. Subsequent calls to RegisterWindowMessage will return the same ident.
· However, the ident isn’t available across Windows sessions so it’s not safe to say “if x is okay this time, it will be the same next time”, the same message may (WILL) have a new ident each windows session. (Unlike a normal WM_USER + define.
Slide 7

Re-Iterate

as slide

slide 8

Using our custom message

· Show Code (mainapp mainappmain.pas)

· Get the Ident

· Give the ident a sensible local variable name, JM_CLOSE

· Override the default WndProc function to handle the message

· Handle the message..as appropriate

Slide 9

Sending the message

· We’re going to broadcast the message

· As we’re using a custom message we can send it to everything knowing that only those apps which we’ve enabled will do something with it. This means we can, in this instance, close down any app that will respond with a single call.

· Using SendNotifyMessage

· We use SendNotifyMessage with the HWND_BROADCAST parameter to send to all top level windows, whether visible, owned pop-up etc.

· The reason we use SendNotifyMessage is that this message doesn’t wait for a reply (unless it’s sent to the calling thread).

Demo it.

run project1.exe from Delphi

run mainapp.exe from d:\ukbug\meetings\cgi-bin

and press the close button on project1

Show that the things close instantly. Now uncomment the line JM_CLOSE in project1 WndProc. Same as above. Notice that the message is sent first to the calling application and now waits for the return. (Comment out the showmessage). See they both go…which one first???

Slide 10

Doing all of this on a CGI

· Show startapp.dpr

· As you can see the code is identical to the Mutex handling of mainapp.

· Whilst our mainapp.exe will handle it’s own singleton instantiation, we do it in the CGI to avoid firing a needless process (thus reducing server load).

· In other words, the CGI checks for mainapp, if it finds the mutex then it quits out, if it doesn’t then it does the ShellExecute.

· Note also that we free the mutex as soon as possible. Whilst this may mean that a second CGI can think it needs to start the mainapp, it’s unlikely. (You could still be processing CGI instance 1 when CGI instance 2 asks for the mutex and mainapp hasn’t started.)

· Show closeapp.dpr

· Again this code is near identical to the code from the earlier project. We simply get our custom message and send it.

· SHOW IT WORK ON W2k

· run d:\ukbug\meetings\cgi-bin\startapp.exe

· run d:\ukbug\meetings\cgi-bin\closeapp.exe

· Then do them on Craig’s box…WINTOP (set up the html project if needed)

· ISSUES!
· Some issues have come to light on this when testing.

· WIN2K.

· As you can see this works on 2000, but it doesn’t work when sent into IIS5. As I’ve only had 2000 for a week (and already found that IE5 can block me from copying files on my network!), I haven’t a clue as to why…

· WinNT4

· Works perfectly as you’d expect

· 95/98

· IIS on NT4/2000 has it’s own application space. This means that whilst things like the Mutex are machine wide, things like messaging are kept within the “IIS Process”.

· On 95/98 this isn’t the case. We can close the app from anywhere…not good.

Slide 11

More Custom Messages

· Custom messages have many uses. (Demo all with Project 1)

· You can set up all your applications to behave in a certain way, if one does something, then the others do it too…

· Change all your corporate applications to a single non-system colour scheme or schemes.

· Send status messages between instances of the same application, without worrying about who they are

· and how about, close one, close all…

Show the message handling, registering extra messages, extra message handling sending params etc.

