Project CAG01

Working Arrangements Overview 1

12/09/2004 14:25

Using Runtime Compilation to Customise Data Validation

Synopsis

Overview

 This paper undertakes an investigation into using the .NET CodeDom compiler classes to create efficient and flexible data validation objects that can easily be customised to support specific customer requirements.

From experience, it is apparent that there is often a gulf between a customer's requirements and the functionality delivered in back-office applications. Though the customer can often adjust their processes, a better approach is to build in the ability to configure the application to meet their requirements and hence deliver more of what they want.

The presence of compilers as part of the .NET runtime opens up the possibility of new approaches to configurable data validation. Instead of build custom structures and processing capability, there might be easier to compile specialised validation objects on the fly as opposed to having to develop bespoke code prior to delivery.

Paper Contents

 1. Introduction

· Set the scene for data validation, in particular citing the extreme variations required for multi-language and multi-cultural support.

 2. Basic Example

· Walkthrough of a very simple example of how we can compile code on the fly and use it within our existing code base. 

· This will demonstrate the basic capabilities of the CodeDom.Compiler.ICodeCompiler interface.

· This will be done using basic WinForms screens.

· Will start to flesh out the possible benefits of this approach.

3. Data Validation Requirements

Start the analysis of what we might want from a validation sub-system (types of validation, deployment issues, traceability from requirements capture through to functionality).

· Establish a very simple design, based on a core business object class and a standardised validation methodology.

· Each business rule to be implemented as a new Rule class, which will be hooked into the business object validation process.

 4. Simple Validation Example

· Develop a simple example of how a Rule might be constructed on the fly from source data.

· Use serialization to load the business rule source information, then create a specialised rule descendant and compile it into a memory based assembly.

· Hook the rule objects into the business objects using delegates (certainly consider the options!).

5. Refine Validation Requirements

· Further analysis of validation requirements. Start to look at how we might handle large numbers of rules without substantial performance hit.

· Consider the issue of conditional validation, where particular business object state might require particular rules.

· Consideration of how we might collect the validation results for display to the users.

6. Complex Validation Example

· Demonstrate a more refined example where we show multiple validation rules being used in conditional and ordinary mode. 

7. Conclusions

· Is this approach worth it? Look at the benefits and costs.

· Consider other uses of the technology.

· What other approaches might we take?

8. Other areas 

· Could we do this in Mono?

· Instead of compilation to memory, could we do it to disk and then load on demand?
D:\projects\CAG01\CAG01 Overview 1.doc

1 / 2

