
DISTRIBUTED VERSION
CONTROL WITH GIT

Abizer Nasir

ME

ME

•Mac → iOS developer

ME

•Mac → iOS developer

• Git fiend

ME

•Mac → iOS developer

• Git fiend

• Please ask questions - it’ll be a dull talk otherwise

ME

•Mac → iOS developer

• Git fiend

• Please ask questions - it’ll be a dull talk otherwise

• I’ll make the slides available (keynote & PDF)

OUTLINE

OUTLINE

• The basics of distributed version control and Git.

OUTLINE

• The basics of distributed version control and Git.

• The object model

OUTLINE

• The basics of distributed version control and Git.

• The object model

• Advanced workflows to whet your appetite

GIT IS LARGE

add
am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone
commit
describe
diff
fetch
format-patch
gc
grep
gui
init
log
merge
mv
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash
status
submodule

tag
gitk
apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
ls-files
ls-remote
ls-tree
merge-base
name-rev
pack-redundant
rev-list
show-index
show-ref
tar-tree
unpack-file

var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found
mergetool
pack-refs
prune
reflog
relink
remote

repack
replace
repo-config
annotate
blame
cherry
count-objects
difftool
fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

132 COMMANDS

add
am
archive
bisect
branch
bundle
checkout
cherry-pick
citool
clean
clone
commit
describe
diff
fetch
format-patch
gc
grep
gui
init
log
merge
mv
notes
pull
push
rebase
reset
revert
rm
shortlog
show
stash
status
submodule

tag
gitk
apply
checkout-index
commit-tree
hash-object
index-pack
merge-file
merge-index
mktag
mktree
pack-objects
prune-packed
read-tree
symbolic-ref
unpack-objects
update-index
update-ref
write-tree
cat-file
diff-files
diff-index
diff-tree
for-each-ref
ls-files
ls-remote
ls-tree
merge-base
name-rev
pack-redundant
rev-list
show-index
show-ref
tar-tree
unpack-file

var
verify-pack
check-attr
check-ref-format
fmt-merge-msg
mailinfo
mailsplit
merge-one-file
patch-id
peek-remote
sh-setup
stripspace
daemon
fetch-pack
http-backend
send-pack
update-server-info
http-fetch
http-push
parse-remote
receive-pack
shell
upload-archive
upload-pack
config
fast-export
fast-import
filter-branch
lost-found
mergetool
pack-refs
prune
reflog
relink
remote

repack
replace
repo-config
annotate
blame
cherry
count-objects
difftool
fsck
get-tar-commit-id
help
instaweb
merge-tree
rerere
rev-parse
show-branch
verify-tag
whatchanged
archimport
cvsexportcommit
cvsimport
cvsserver
imap-send
quiltimport
request-pull
send-email
svn

37 USER FACING

GIT IS DIFFICULT

•git commit has over 30 flags

•git commit has over 30 flags

•Changes can be merged or rebased

•git commit has over 30 flags

•Changes can be merged or rebased

•Similar commands e.g. fetch, & pull,

•git commit has over 30 flags

•Changes can be merged or rebased

•Similar commands e.g. fetch, & pull,

•There is no canonical master repository

•git commit has over 30 flags

•Changes can be merged or rebased

•Similar commands e.g. fetch, & pull,

•There is no canonical master repository

•Generally need a private and public repo for
sharing

•git commit has over 30 flags

•Changes can be merged or rebased

•Similar commands e.g. fetch, & pull,

•There is no canonical master repository

•Generally need a private and public repo for
sharing

•History can be changed

•git commit has over 30 flags

•Changes can be merged or rebased

•Similar commands e.g. fetch, & pull,

•There is no canonical master repository

•Generally need a private and public repo for
sharing

•History can be changed

•Third party UIs are variable

GIT IS FLEXIBLE

•Generally find a command to do what you want

•Generally find a command to do what you want

•Works with svn, cvs, mercurial…

•Generally find a command to do what you want

•Works with svn, cvs, mercurial…

•Decentralised structure makes it easier to create
and share subsets of changes

•Generally find a command to do what you want

•Works with svn, cvs, mercurial…

•Decentralised structure makes it easier to create
and share subsets of changes

•Nested repositories with submodules

•Generally find a command to do what you want

•Works with svn, cvs, mercurial…

•Decentralised structure makes it easier to create
and share subsets of changes

•Nested repositories with submodules

•Not just git diff, but git difftool

•Generally find a command to do what you want

•Works with svn, cvs, mercurial…

•Decentralised structure makes it easier to create
and share subsets of changes

•Nested repositories with submodules

•Not just git diff, but git difftool

•…

WHAT IS VERSION CONTROL

WHAT IS VERSION CONTROL

• A way for management to make sure you’re meeting your
“lines of code” targets

• A pointless bureaucratic step that wastes time that could be
spent coding.

• A record of all your mistakes and bad decisions

WHAT IS VERSION CONTROL

WHAT IS VERSION CONTROL

WHAT IS VERSION CONTROL
• A way of making snapshots of the codebase, and to restore

the codebase to marked previous states and make changes to
them.

WHAT IS VERSION CONTROL
• A way of making snapshots of the codebase, and to restore

the codebase to marked previous states and make changes to
them.

• A way of managing related but different lines of development.

WHAT IS VERSION CONTROL
• A way of making snapshots of the codebase, and to restore

the codebase to marked previous states and make changes to
them.

• A way of managing related but different lines of development.

• A record of the evolution of a codebase, including previous
design decisions that were later abandoned.

WHAT IS VERSION CONTROL
• A way of making snapshots of the codebase, and to restore

the codebase to marked previous states and make changes to
them.

• A way of managing related but different lines of development.

• A record of the evolution of a codebase, including previous
design decisions that were later abandoned.

• A record of changes with a narrative.

WHAT IS VERSION CONTROL
• A way of making snapshots of the codebase, and to restore

the codebase to marked previous states and make changes to
them.

• A way of managing related but different lines of development.

• A record of the evolution of a codebase, including previous
design decisions that were later abandoned.

• A record of changes with a narrative.

• A way of sharing code with others, with methods to combine
changes and resolve conflicts.

WHAT IS A DVCS

WHAT IS A DVCS

• A Version Control System.

WHAT IS A DVCS

• A Version Control System.

•Need not be centralised. Local in nature. Can be used without
connection to a server. Repositories are naturally peers.

WHAT IS A DVCS

• A Version Control System.

•Need not be centralised. Local in nature. Can be used without
connection to a server. Repositories are naturally peers.

•Optimised for handling independent changes to the
codebase, fast syncing, and merging.

WHAT IS A DVCS

• A Version Control System.

•Need not be centralised. Local in nature. Can be used without
connection to a server. Repositories are naturally peers.

•Optimised for handling independent changes to the
codebase, fast syncing, and merging.

• Repositories don’t need to be exact copies, so parts of a
repository can be private.

COMMON TOPOLOGIES
There are many ways to organise repositories

CENTRALISED

Shared
repository

Dev Dev Dev

CENTRALISED

Shared
repository

Dev Dev Dev

INTEGRATION MANAGER

Main
repository

Dev Dev Dev

Dev

INTEGRATION MANAGER

Main
repository

Dev Dev Dev

Dev

INTEGRATION MANAGER

Main
repository

Dev Dev Dev

Dev

DICTATOR-LIEUTENANT
Main

repository

Dev

Lieutenant

Dev

Dictator

Lieutenant

Dev

Everyone keeps up to date with the Main repository

DICTATOR-LIEUTENANT
Main

repository

Dev

Lieutenant

Dev

Dictator

Lieutenant

Dev

Everyone keeps up to date with the Main repository

BASIC WORKFLOW

BASIC WORKFLOW

• Create a repository (git init)

BASIC WORKFLOW

• Create a repository (git init)

• Add files to the project (git add)

BASIC WORKFLOW

• Create a repository (git init)

• Add files to the project (git add)

• Commit the files to the repository (git commit)

BASIC WORKFLOW

• Create a repository (git init)

• Add files to the project (git add)

• Commit the files to the repository (git commit)

• Change and/or add files to the repository

BASIC WORKFLOW

• Create a repository (git init)

• Add files to the project (git add)

• Commit the files to the repository (git commit)

• Change and/or add files to the repository

• Commit the files the repository

BASIC WORKFLOW

• Create a repository (git init)

• Add files to the project (git add)

• Commit the files to the repository (git commit)

• Change and/or add files to the repository

• Commit the files the repository

• lather, rinse, repeat

TERMINOLOGY

TERMINOLOGY

•Working directory - your code. The tracked files in their
current state on your computer

TERMINOLOGY

•Working directory - your code. The tracked files in their
current state on your computer

• Index - Also know as the staging area. The changes that will be
added to the commit

TERMINOLOGY

•Working directory - your code. The tracked files in their
current state on your computer

• Index - Also know as the staging area. The changes that will be
added to the commit

• HEAD - the tip of the current branch, This is where the next
commit will point to.

Working Directory

Working Directory

Index

Working Directory

Index

Commit

Working Directory

Commit

Working Directory

Commit

Index

Working Directory

Commit

Index

Commit

Working Directory

Commit

Commit

COMMITS

a34cd

b134f

ffe98

COMMITS

• A chain of immutable
snapshots

a34cd

b134f

ffe98

COMMITS

• A chain of immutable
snapshots

• has a reference to its
parents, but not its children
(Directed Acyclic Graph)

a34cd

b134f

ffe98

COMMITS

• A chain of immutable
snapshots

• has a reference to its
parents, but not its children
(Directed Acyclic Graph)

• History can be recreated

a34cd

b134f

ffe98

COMMITS

• A chain of immutable
snapshots

• has a reference to its
parents, but not its children
(Directed Acyclic Graph)

• History can be recreated

• Referred to by a unique
identifier (sha)

a34cd

b134f

ffe98

BRANCHES

a34cd

b134f

ffe98

master

23def

c543d

bugfix

BRANCHES

•marks multiple lines of
development.

a34cd

b134f

ffe98

master

23def

c543d

bugfix

BRANCHES

•marks multiple lines of
development.

• Convention has `master` as
main branch

a34cd

b134f

ffe98

master

23def

c543d

bugfix

BRANCHES

•marks multiple lines of
development.

• Convention has `master` as
main branch

• Common base shows where
they diverge

a34cd

b134f

ffe98

master

23def

c543d

bugfix

BRANCHES

•marks multiple lines of
development.

• Convention has `master` as
main branch

• Common base shows where
they diverge

• short lived, cheap to make,
do not persist.

a34cd

b134f

ffe98

master

23def

c543d

bugfix

BRANCHES

a34cd

b134f

ffe98

master

23def

c543d

4dd38

BRANCHES

• Branch structure may
remain, even after the
branch is removed a34cd

b134f

ffe98

master

23def

c543d

4dd38

BRANCHES

• Branch structure may
remain, even after the
branch is removed

• Keeps changes separate until
they need to be brought
together

a34cd

b134f

ffe98

master

23def

c543d

4dd38

BRANCHES

• Branch structure may
remain, even after the
branch is removed

• Keeps changes separate until
they need to be brought
together

• They are just pointers to a
commit

a34cd

b134f

ffe98

master

23def

c543d

4dd38

TAGS

a34cd

b134f

ffe98

master

23def

c543d

4dd38
v1.1

TAGS

• A simple way to label a
commit (or other object).

a34cd

b134f

ffe98

master

23def

c543d

4dd38
v1.1

TAGS

• A simple way to label a
commit (or other object).

• The tag name can be used
as a synonym for a commit

a34cd

b134f

ffe98

master

23def

c543d

4dd38
v1.1

TAGS

• A simple way to label a
commit (or other object).

• The tag name can be used
as a synonym for a commit

• Two types, one is lightweight
(like a branch) the other is a
full object, and this can be
cryptographically signed.

a34cd

b134f

ffe98

master

23def

c543d

4dd38
v1.1

THE GIT OBJECT MODEL
Understand this, and you’ll never be afraid of Git again.

THE BLOB

THE BLOB
• The immutable building block of the object model

THE BLOB
• The immutable building block of the object model

• Just the contents of the file, not the name, or the mode

THE BLOB
• The immutable building block of the object model

• Just the contents of the file, not the name, or the mode

• Compressed, and named after it’s SHA-1 hash

THE BLOB
• The immutable building block of the object model

• Just the contents of the file, not the name, or the mode

• Compressed, and named after it’s SHA-1 hash

• If the contents of several files are the same, the blobs are the
same.

THE BLOB
• The immutable building block of the object model

• Just the contents of the file, not the name, or the mode

• Compressed, and named after it’s SHA-1 hash

• If the contents of several files are the same, the blobs are the
same.

• Referred to by the 40 character hash, though 4-7 characters
are usually enough

THE BLOB
• The immutable building block of the object model

• Just the contents of the file, not the name, or the mode

• Compressed, and named after it’s SHA-1 hash

• If the contents of several files are the same, the blobs are the
same.

• Referred to by the 40 character hash, though 4-7 characters
are usually enough

• git cat-file -p <sha> is a handy command

THE TREE

THE TREE

• Recursive object that just holds trees and blobs

THE TREE

• Recursive object that just holds trees and blobs

• Think of it as being like a directory

THE TREE

• Recursive object that just holds trees and blobs

• Think of it as being like a directory

• The tree is what holds the names and modes of the blobs and
trees it contains.

THE TREE

• Recursive object that just holds trees and blobs

• Think of it as being like a directory

• The tree is what holds the names and modes of the blobs and
trees it contains.

• git ls-tree <sha> is a handy command

TODO EXAMPLE

TODO EXAMPLE

THE COMMIT

THE COMMIT

• This object references the top level tree.

THE COMMIT

• This object references the top level tree.

• Contains other information

• Author / committer

• date

• commit title and message

• parent commit(s)

TODO EXAMPLE

TODO EXAMPLE

THE COMMIT

THE COMMIT

• Blobs are immutable, so any change propagates upwards

THE COMMIT

• Blobs are immutable, so any change propagates upwards

• Renames don’t change the file blob, because contents are the
same, but the tree is changed

THE COMMIT

• Blobs are immutable, so any change propagates upwards

• Renames don’t change the file blob, because contents are the
same, but the tree is changed

• Because objects are immutable you never lose history as long
as the commit is rooted (I’ll explain this later)

TODO EXAMPLE

COMMIT MESSAGES

• Use the present imperative
tense.

• ‘Change’ not ‘Changes’, ‘Add’
not ‘Adds’ or ‘added’.

• Describe what applying the
commit will do, not what you
did.

• Matches system generated
output.

THE TAG

THE TAG

• Lightweight tags are just like branches, a pointer to an object

• But they don’t show up in branch listing so it’s less cluttered
to use tags

THE TAG

• Lightweight tags are just like branches, a pointer to an object

• But they don’t show up in branch listing so it’s less cluttered
to use tags

• Annotated tags are full objects, like commits, and can have a
message as well as a name.

• Immutable

• Can be GPG signed

MERGE

MERGE

• Brings together separate lines of development.

MERGE

• Brings together separate lines of development.

• Conflicts are a fact of life, but DVCS encourages small,
frequent commits so the impact is minimised.

MERGE

• Brings together separate lines of development.

• Conflicts are a fact of life, but DVCS encourages small,
frequent commits so the impact is minimised.

• Easy to bail out of a commit.

MERGE

• Brings together separate lines of development.

• Conflicts are a fact of life, but DVCS encourages small,
frequent commits so the impact is minimised.

• Easy to bail out of a commit.

•Distributed - bounce it back to the committer and have him/
her fix the conflicts.

MERGE

• From branch master

• git merge bugfix

a34cd

b134f

ffe98

master

23def

c543d

bugfix

MERGE

• From branch master

• git merge bugfix

a34cd

b134f

ffe98

master

23def

c543d

4dd38
bugfix

REBASE

REBASE

• Like a merge but has a different purpose.

REBASE

• Like a merge but has a different purpose.

• Rather than joining two branches together, will re-create
commits so that it looks like the rebased changes have been
made from the starting point of the other branch.

REBASE

• From branch bugfix

• git rebase master

a34cd

b134f

ffe98

master

23def

c543d

bugfix

REBASE

• From branch bugfix

• git rebase master

• two new commits created

•Old commits unrooted

• Straight line history!

a34cd

b134f

ffe98

master 23def

c543d

ba802

bugfixf1259

FAST-FORWARD

FAST-FORWARD

• If a merge is made between two branches in a straight line a
fast-forward merge is done instead

FAST-FORWARD

• If a merge is made between two branches in a straight line a
fast-forward merge is done instead

•No new objects created, only the branch pointer is moved.

FAST-FORWARD

• git checkout master

• git merge bugfix

a34cd

b134f

ffe98

master 23def

c543d

ba802

bugfixf1259

FAST-FORWARD

• git checkout master

• git merge bugfix

a34cd

b134f

ffe98

master

23def

c543d

ba802

bugfixf1259

WORKING WITH REMOTES
It’s a Distributed Version Control System; so distribute your

changes

REMOTES

REMOTES

• A repository can have multiple remotes

REMOTES

• A repository can have multiple remotes

• Remotes are bare repositories that only have the git object
files, no working directory

REMOTES

• A repository can have multiple remotes

• Remotes are bare repositories that only have the git object
files, no working directory

• If you want to share your repository, you need to set up a
bare public facing repository that others can get changes from.

REMOTES

REMOTES

• Remotes can be added at any time with `git remote add`

REMOTES

• Remotes can be added at any time with `git remote add`

• Creating a repository by cloning sets up the remote with the
default name of origin

REMOTES

• Remotes can be added at any time with `git remote add`

• Creating a repository by cloning sets up the remote with the
default name of origin

• Usually the master branch is set up for tracking

PUSHING

PUSHING

• Set up additional branches to push

• git push -u origin myBranch

PUSHING

• Set up additional branches to push

• git push -u origin myBranch

• After that pushing changes is easy

• git push origin

•Will push all the tracked branches to origin

FETCHING

FETCHING

• This pulls down all the remote references to your local
repository, but does not effect your local branches or working
directory

• git fetch origin

FETCHING

• This pulls down all the remote references to your local
repository, but does not effect your local branches or working
directory

• git fetch origin

• branches prefixed by the remote name e.g.

•master - origin/master

PULLING

PULLING

• A hybrid command that performs a fetch and a merge. i.e. All
changes brought down and the current branch is merged with
its matching branch

PULLING

• A hybrid command that performs a fetch and a merge. i.e. All
changes brought down and the current branch is merged with
its matching branch

• If you don’t want to merge, you can specify a rebase

• git pull --rebase

WORKFLOW

WORKFLOW

•Make changes to your codebase

WORKFLOW

•Make changes to your codebase

• Get changes from the remote with `git fetch`

WORKFLOW

•Make changes to your codebase

• Get changes from the remote with `git fetch`

• Examine changes, perform merges or rebases

WORKFLOW

•Make changes to your codebase

• Get changes from the remote with `git fetch`

• Examine changes, perform merges or rebases

• If required, push changes back up to the remote

WORKFLOW

•Make changes to your codebase

• Get changes from the remote with `git fetch`

• Examine changes, perform merges or rebases

• If required, push changes back up to the remote

•Do this frequently!

COMMON COMMANDS
You’ll be using these a lot, too

DIFFERENCES

• Seeing the differences
between the current and
previous commits and the
developing code

• Can use `git diff` or `git
difftool`

GIT LOG

GIT LOG

• Shows the differences between commits

• git log -3

• git log --since=”2 weeks ago”

GIT LOG

• Shows the differences between commits

• git log -3

• git log --since=”2 weeks ago”

•Output can be customised, very long man page!

GIT STASH

GIT STASH

• Git won’t let you switch branches if there are changes in your
working directory that will be lost

GIT STASH

• Git won’t let you switch branches if there are changes in your
working directory that will be lost

• git stash lets you save the state in a stack

• git stash (saves the state)

• git stash pop (stash@{0})

• git stash apply (stash@{1} or stash@{2.weeks.ago}

GIT SHOW

GIT SHOW

• This is useful for presenting objects in a human readable
format.

• The contents of a file.

• The contents of a tree (but not subtrees).

• The message of a commit and the diff.

GIT SHOW

• This is useful for presenting objects in a human readable
format.

• The contents of a file.

• The contents of a tree (but not subtrees).

• The message of a commit and the diff.

•Most useful for commits and tags.

GIT LS-TREE

GIT LS-TREE

• Better than git show for viewing trees, because it gives the
hashes of the trees and blobs that it points to.

• -r recursively shows subtrees.

• -t shows the hashes of the subtrees as well.

GIT CAT-FILE

GIT CAT-FILE

• Extracts the contents of individual blobs.

• -t shows the type of the object instead of the contents.

• -p pretty print the contents based on the type.

GIT REFLOG
• When the tip of a branch is

updated, this is recorded in the
reflog

• This is how you can track commits
that are not on any branches, and
why it is said that you don’t lose
data in Git.

• It can be pruned, as with
repositories. Although, as with
repositories, not everything is
tidied up.

• The changes to the local
repository are recorded. So
history is not leaked.

ADVANCED WORKFLOWS
You know you want to…

LATE NIGHT BUG FIXING

master

feature

Feature

head

master

feature

Feature

You’re working on a feature in it’s own branch.

head

master

feature

head

Feature

master

feature

You realise that you have a bug to fix.

head

Feature

master

featurehead
Feature

master

feature

You stash your current work and create a bugfix
branch off master

head

bugfix Feature

master

featurehead

bugfix stash@{0}

master

feature

You get carried away with the fix and add a bit
more to the feature.

head

bugfix

Amend

Fix the bug

stash@{0}

master

feature

stash@{0}

Amend

master

feature

stash@{0}

Using `git add -p` you add the bits of code that
fix the bug to the index and commit just that.

head

Amend

bugfix

master

feature

head

bugfix

master

feature

stash@{1}

Stash the extra changes that add the feature.

head

stash@{0}

bugfix

feature

stash@{1}

head

stash@{0}

bugfix

feature

stash@{1}

Merge the changes back into the master branch.

head

stash@{0}

bugfix

master

feature

stash@{1}head

stash@{0}

bugfix

master

feature

stash@{1}

Rebase the feature branch onto the master
branch

head

stash@{0}

bugfix

master

feature

head

bugfix

master

feature

Feature code

Pop the stashes onto the feature branch one at
a time and fix any merge conflicts.

head

Amend feature

bugfix

master

EARLY MORNING WITCH-
HUNT

Buggy

Good

Buggy

Good

Somehow, a bug appeared between two states of
the codebase. And you have to find out where.

Buggy

Good

Buggy

Good

You create a test for the bug and run `git bisect`.

Buggy

Good

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Buggy

Good

Git runs a binary search algorithm to check out commits
and find the first one that causes the test to fail.

Culprit

Buggy

Good

Culprit

Buggy

Good

Use `git log` to show who checked in the commit, and
`git diff` to see the code that introduced the bug.

Culprit

TOO MANY BRANCHES?

master

UI

bugfix

feature

test

$ git branch
$ master
$ bugfix
$ feature
$ test
$ UI

Branches are cheap, but it can be distracting to have to
deal with too many of them.

master

UI

bugfix

feature

test

$ git branch
$ master
$ bugfix
$ feature
$ test
$ UI

master

UITag

bugfix

featureTag

testTag

$ git branch
$ master
$ bugfix

Replace them with tags so they don’t show up in the
list of branches. Recreate the branch by branching off
the tag.

master

UITag

bugfix

featureTag

testTag

$ git branch
$ master
$ bugfix

INDEPENDENT BRANCHES

master

bugfix

Documentation

master

bugfix

Documentation

Branches can be independent of each other. Related
items such as documentation, marketing
screenshots, App Store copy etc. can be put into
their own branches.

COMPOSITION NOT
INHERITANCE

GIT SUBMODULES

• A git repository within a git repository. Can be recursive

• The super repository checks out the submodule at a specific
hash, so upstream changes will not suddenly appear.

• Two stage creation may seem odd, but it means that the
submodule that is part of the general repository need not be
the same as the local repository.

• Always push submodule changes before pushing super
repository changes.

CLEAN PRODUCTION
BRANCHES

• It is common to have helper
classes that are developed
with scaffolding code.

• Create a production branch
that has this scaffolding
removed.

• Keep it up to date by rebasing.

• Easy to import as submodules.

master

Production

v2.0

v1.5

v1.0

HISTORY IS WRITTEN BY THE
VICTORS

CHANGING HISTORY IS BAD.

CHANGING HISTORY IS BAD.

• If the repository has been cloned and someone else is
working on changes, modifying the history means that they will
have to do some work to reconcile the differences.

CHANGING HISTORY IS BAD.

• If the repository has been cloned and someone else is
working on changes, modifying the history means that they will
have to do some work to reconcile the differences.

• This is why I recommend `git fetch` and manually merging
upstream changes.

CHANGING HISTORY IS NOT
BAD.

CHANGING HISTORY IS NOT
BAD.

• local development branches – not shared with anyone.

CHANGING HISTORY IS NOT
BAD.

• local development branches – not shared with anyone.

• local branches used for syncing – your codebase, so you know
what state it’s in.

CHANGING HISTORY IS NOT
BAD.

• local development branches – not shared with anyone.

• local branches used for syncing – your codebase, so you know
what state it’s in.

• A quick `git commit --amend` before anyone is likely to work
on the push.

CHANGING HISTORY IS NOT
BAD.

• local development branches – not shared with anyone.

• local branches used for syncing – your codebase, so you know
what state it’s in.

• A quick `git commit --amend` before anyone is likely to work
on the push.

• You can always just re-clone the repository if it messes up.

CHANGING HISTORY IS NOT
BAD.

• local development branches – not shared with anyone.

• local branches used for syncing – your codebase, so you know
what state it’s in.

• A quick `git commit --amend` before anyone is likely to work
on the push.

• You can always just re-clone the repository if it messes up.

• `git pull --rebase` is a handy command.

THE BLAME GAME

GIT BLAME

AND FINALLY…
Almost done now.

RESOURCES

• http://git-scm.org/documentation/

• http://gitready.com/

• http://365git.tumblr.com/

• http://www-cs-students.stanford.edu/~blynn/gitmagic/

• http://gitcasts.com/

http://gitcasts.com
http://gitcasts.com

