Martin P
Developer Ev
Microsoft

Martin.Parry@microsoft.co

Isn’t Security for Admins?

System administrators do a lot
Password policy
Firewalls
Application deployment

Things they can’t do: -
Ensure that allowed traffic is all "good”

Test applications for vulnerability
Control the level of privilege that apps require

Challenges
s

¢ Attacker needs to understand only one security issue

¢« Defender needs to secure all entry points
¢ Attacker has unlimited time

Attackers vs. Defenders ¢« Defender works with time and cost constraints

¢ Secure systems are more difficult to use

¢« Complex and strong passwords are difficult to
remember

Security vs. Usability ¢ Users prefer simple passwords

¢ Developers and management think that security
does not add any business value

¢ Addressing security issues just before a product is
released is very expensive

Security As an Afterthought

The Buffer Overrun

Typically means copying input into a fixed-size
buffer, without checking the input size

Buffers can be anywhere in memory, although
exploitability may differ

There are a number of effective strategies to
avoid these attacks...

...but you have to remember to use them

The Buffer Overrun

: I |
Hig y Suttun The Stack Frame

Memory of Stack
What if one of the
locals is a buffer?

Parameter 1

Parameter 2

Return Address EXplOitS include
Local Variable 1 DoS

Local Variable 2

| Modified behaviour
Local Variable 3

Low | | Top of
Memory | | Stack

The Buffer Overrun

: Bottom
of Stack

High
Memory
char *s
intn
Return Address
char userName[10]
int userld
char buffer[100]
Low I

Memory |

| Top of
| Stack

Parameter s points
to some input data

Function copies that
data into buffer

y, it happens!

Countering Buffer Overruns

Use the .NET application platform
JIT compilation checks for buffer overruns
Avoid “unsafe” code in C#

C++, use the /GS switch
Spots stack misuse at runtime

Windows DEP (data execution prevention)

Makes use of hardware/software page marking

Memory pages can be marked as “data”, meaning no code
can be executed in them

Code/Security Reviews

SQL Injection

Use of unchecked input in dynamic SQL

An unsophisticated attack with potentially
devastating consequences

All languages, all databases are vulnerable

There are good techniques for avoiding SQL
Injection

Countering SQL Injection

Don’t copy input straight into SQL statements
Parameterize all commands

Parameter values are not compiled

Better yet, use stored procedures
With parameters
Can deny access to underlying tables

Code/Security Reviews

Cross-site Scripting

Web page input reflected directly into output
Query string or form parameters
Particularly dangerous when output into an
HTML element the user might click on
Can feed in “onclick” script
Might forward form parameters to another site
Might forward cookie contents to another site

Any web server that supports dynamic content is
susceptible

Countering Cross-site Scripting

HTMLEncode or URLEncode data before output

III

Any “special” characters are escaped
Still leaves some potential exploits
Code/Security review

Don’t echo input to output at all

Elevated Privilege

If you're out to compromise a component, you'll
look for one with high privilege

No specific attack mechanism, but look out for
this where a host process runs application code

IS in-process applications
Impersonation can be fragile

Any compromise is potentially more serious if it
affects highly-privileged code

Countering Elevated Privilege

Well known doctrine: -

Run with just enough privilege to get the job done,
and no more

IS5 — use medium or high isolation

Windows Server 2003 — no user code runs as
SYSTEM by default

Use LocalService and NetworkService accounts
for low-privileged “service” processes

Code/Security review

Spo

ut!

Reviews

General Principles

Expect all input to have come from a bad guy
Expect all output to be going to a bad quy
Protect your secrets
Use the Principle of Least Privilege
Don’t “roll your own"” security
Use tried-and-tested, industry-recognized standards

Consider moving to .NET
Verification, Code-access security

Minimize Attack Surface

Expose only limited, well-documented interfaces
from your application

Use only services that your app really needs

Slammer and CodeRed would not have happened if
certain services were off by default

ILoveYou (and others) would not have happened if
scripting was disabled by default

Turn off everything else

Fail Intelligently

DWORD dwRet = IsAccessAllowed(..);
1if (dwRet == ERROR_ACCESS_DENIED) {
// Security check failed.
// Inform user that access is denied
} else {
// Security check OK.

// Perform task..

What if IsAccessAllowed() returns
ERROR_NOT_ENOUGH_MEMORY?

If your code does fail, make sure it fails securely

Fail Intelligently

-

Do not:
*Reveal information in error messages

<customErrors mode="0On"/>

*Consume resources for lengthy periods after a failure

Do:

*Use exception-handling blocks to avoid propagating
errors back to the caller

*Write suspicious failures to an event log

out project

reats

cycle

Threat Modelling Process
Step 1: Identify Assets

Build a list of assets that require protection,
including:
Confidential data, such as customer databases
Web pages
System availability

Anything else that, if compromised, would prevent correct
operation of your application

Threat Modelling Process

Step 2: Create Architecture Overview

|dentify what the application does

Create an application architecture diagram
Identify the technologies

NTFS Permissions [il€ Authorization

izati User-Defined Role
(Authentication) URL Authorization

NET Roles (Authentication)
(Authentication)
Aice [| | ASPNET -
|\B/|§tr)y IS I\:;:I;oNs;t (Process Identity) : gll_i(goso i
: erver
| [\ /
\/ IPSec ~
- (Private/Integrity)
(Privacy/Integrity)
Anonymous Forms

Microsoft Windows

Authentication Authentication Authentication

Threat Modelling Process
Step 3: Decompose the Application

—,

Identify trust boundaries

Break down the application

Create a security profile
based on traditional areas
with security issues

Identify data flow

. _ Identify entry points
Examine interactions

between different
subsystems

Use DFD or UML diagrams

Identify privileged code

Document security profile

Threat Modelling Process
Step 4: Identify the Threats

Assemble team

|dentify roles

Who judges risk?

Who decides what an asset is?
Identify threats

Network threats

Host threats

Application threats

Threat Mo

Using STRIDE

Threat Modelling Process
|dentify th ts Using Attack Trees

View payroll data (l)

Threat #1 () 7 Traffic is L{nprotectgd (AND)
View payroll data Attacke.r views tra-fflc
, Sniff traffic with protocol analyzer

Listen to router traffic
1.1 1.2 Router is unpatched (AND)

Traffic is Attacker views Compromise router
unprotected traffic Guess router password

1.2.1 1.2.2
Sniff traffic with Listen to router
protocol analyzer traffic

1.2.2.1 1.2.2.2 1.2.2.3
Router is Compromise Guess router
unpatched router password

rocess
Threats

template

+ Leave Risk blank (for now)

Threat Modelling Process
Step 6: Rate the Threats

Use formula:
Risk = Probability * Damage Potential

Use DREAD to rate threats

amage potential
eproducibility
xploitability
ffected users
iscoverability

Threat Modelling Process

Examplew the Threats

@ Damage potential
Threat #1 (1) = Affected users
View payroll data | -Or-

@ Damage

1.1 1.2
Traffic is Attacker views
unprotected traffic

1.2.1 1.2.2
Sniff traffic with Listen to router
protocol analyzer traffic

1.2.2.1 1.2.2.2 1.2.2.3
Router is Compromise Guess router
unpatched router password

J

am il
[[

o
[

o
[

Reproducibility
Exploitability
Discoverability
=0r-

Chance

Coding to a Threat Model

Use threat modeling to help:
Determine the most “insecure” portions of your application
Prioritize security push efforts
Prioritize ongoing code reviews
Determine the threat-mitigation techniques to employ
Determine data flow

+ MS enter
* htt |
+ The cycle
+ htt rity/default.aspx?pull
' sdl.asp? r=1
+ Top 1o Developer Must Know

* MSDN Magazine September 2002
+ Application Threat Modelling

+ http://msdn.microsoft.com/security/securecode/threa
tmodeling/acetm/

http://msdn.microsoft.com/security
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/securecode/threatmodeling/acetm/
http://msdn.microsoft.com/security/securecode/threatmodeling/acetm/

Sec

2 Code

ard & David LeBlanc

220 50 0 : Microsoft Press
mcgac:: s:‘riz‘e;iies gndt:chniqu:s frs:ue . 073 5 6 17 2 2 8

applicatios ng in a networked world

Michae!

Microsoft

el
]

SOL: A Process for Developing Demonstrably

More Secure Software

Howard and Steve Lipner

<0 Wnclid,,

opment

Steve Lipner

osoft Press

More Books

Practical Cryptography

Niels Ferguson & Bruce Schneier
e Publisher: John Wiley & Sons Inc.
e [SBN: 0471223573

cRyPT0gRAPH

The .NET Developer's Guide to

The .NET Developer’s

Guide to Windows Windows Secu rlty

Security

\ s Keith Brown

Serie:

-.-. * Publisher: Addison Wesley
H o e ISBN: 0321228359

™
L

© 2006 Microsoft Corporation. All rights reserved.

