	1
	Introduction to
Regular Expressions

Tim Daborn

Acropolis Systems Ltd


	

	2
	Agenda

Regular Expressions from .Net perspective 

Introduction to Regex Class

Basic syntax including:

· Literal & Metacharacters

· Character Classes & Shorthands 

· Quantifiers 

· Alternation

· Atomic Zero Width Assertions

· Grouping\backreference\captures

Advice and highlight out of scope topics


	

	3
	What are Regular Expressions?

Powerful, flexible, and efficient method for processing text\strings 

Parse large amounts of text to find specific character patterns

Once found; can extract, edit, replace, or delete text substrings

Regular expressions is the term used to describe this powerful pattern language and the patterns themselves.

Also know as regex


	Sub language supported by the frame work Like SQL.
A pattern language that allows you to manipulate strings
select a piece of text then insert update delete it


	4
	Flavours of Regex

Grep – Global Regular Expression Print

Also Java, JScript, VB, VBScript, JavaScript C, C++, elisp, Perl, Python, Tcl, Ruby, PHP, sed, awk and others

And now .Net - ‘Perl compatible’


	Lost of tools\languages support Regex

Consensus between the various tools 

Subtle differences between the implementations abound

talking about the System.Text.RegularExpressions.Regex class, but also there is a  JScript object (RegExp) based .NET Regex object uses a subset of commands



	5
	Why use Regular Expressions?

Why talk about it?

Examples of use:

· HTML processing\HTTP header parsing

· Log\data file parsing

· Validation 

· Visual Studio Find dialog box

· and much more

A useful skill that can save you many hours of coding, but documentation leaves much to be desired


	Look at help file

Trying to climb a ladder with the first few rungs missing

Validation: RegularExpressionValidator  control 



	6
	Introduction to the class: Regex

Namespace: System.Text.RegularExpressions 

· Regex.IsMatch(target ,pattern ,options ) 

returns bool

· Regex.Replace(target ,pattern ,replacement ,options )

returns the modified String

· Regex.Split(target ,pattern ,options )

returns string array

· Regex.Match(target ,pattern ,options )

returns Match object

· Regex.Matches(target ,pattern ,options )

returns MatchCollection


	These are the static methods

options are optional

IsMatch is the first occurrenceMatch 
Replace: all occurrences of a character pattern are replaced a specified replacement character string. 

Replace can also take a delegate (matchEvaluator) – also ways & means of including the matched value in the replacement

Searches an input string for all occurrences of a regular expression and returns all the successful matches as if Match were called numerous times. 



	7
	The makings of a Regex

Regular expressions consist of: 

· Literal characters 

Examples: A B C 1 2 3

Beware literal characters are taken literally! 

· Metacharacters (aka Metasequences) 

Special characters that gives regex its processing power 

Examples:  *  ?  \b

Beware have different meanings depending on the:

· Context

· Options applied


	Metacharacters

These are similar to the ? and * metacharacters used with the DOS file system to represent any single character or group of characters.  EG COPY *.DOC A:

Context & options



	8
	Literal Characters – Example 1

Regex:

and
Text: 

'Curiouser and curiouser!' cried Alice.
Result:

'Curiouser and curiouser!' cried Alice.
Regex can consist of just literal characters e.g.
MatchCollection myCol = Regex.Matches( @"Curiouser and curiouser", 

                                                                      @"and", RegexOptions.None  ));


	Remember once we have a match positive or negative we can then do something



	9
	Literal Characters – Example 2

Regex:

ear
Text: 

A cat sat on the hearth, grinning from ear to ear.
Result:

A cat sat on the hearth, grinning from ear to ear.
No concept of the English language 


	

	10
	Literal Characters – Example 3

Regex:

curiouser
Text: 

'Curiouser and curiouser!' cried Alice.
Result:

'Curiouser and curiouser!' cried Alice.
Regex are case sensitive unless the option is set e.g. RegexOptions.IgnoreCase, but  then will also match the text

cuRIoUseR



	Option can also be set in the expression itself 

Regular expressions are a balance between matching what we want and not matching what we don't want.



	11
	Metacharacters – Character Class

Matches any one of several literal characters. 

Defined by enclosing some literal characters inside square brackets. E.g. 

[Cc]uriouser
Negated Character Class [^…] – any character that isn't listed.

[^aeiou]
Contiguous Character Range denoted by a hyphen (-).

[0-9a-fA-F]

	Or for letters



	12
	Character Class – Example 1

Regex:

m[aeiou][^aeiou]
Text: 

moon, memory and muchness
Result:

moon, memory and muchness
Memory did not appear as part of the match mem

                    m[aeiou^aeiou] 

would not work - ^ is only a metacharacter within a character class if it follows the [


	m[aeiou^aeiou]  - nonsense and no compiler errors - emphasise the 2 characters



	13
	Character Class – Example 2

Regex:

er[^a-zA-Z]
Text: 

 Curiouser and curiouser
Result:

 Curiouser and curiouser
The second match did not occur because the regex is looking for a ‘er’ followed by a character that is not in the range ‘a’ to ‘z’.  If  a newline (\n) had followed then it would have matched. 


	

	14
	Character Class Shorthands


	White space Unicode specials – include U+0085 (next line) and white space \p(Z)

Digits – not Chinese, Korean & Japanese 

Read somewhere if you don’t know what ecmascript is you don’t need to worry about this option



	15
	Character Class Shorthand – Example 1

Regex:

\W
Text: 

A rabbit with a waist-coat and a watch.
Result:

A□rabbit□with□a□waist-coat□and□a□watch.
Note the punctuation is matched


	

	16
	Character Class Shorthand – Example 2

Regex:

\s
Text: 

A rabbit with a waist-coat and a watch.
Result:

A□rabbit□with□a□waist-coat□and□a□watch.
Note the punctuation is not matched


	

	17
	Any Character Shorthand - Dot

Matches any character apart from newline (\n)

Except when 

· in a character class ([…])

· RegexOptions.Singleline is set – will match newline (\n)

Regex: 


 c..
Text:


 Alice. 
 cat.

	character class – applies to other metacharaters such as ?



	18
	Character Escapes

Backslash (\) escapes the following character e.g.

\\w will match A:\carpenter\walrus

	\\\w will match carpenter



	19
	Character Escapes – Static Method

Regex member: public static string Escape( string str ); 

Escapes \, *, +, ?, |, {, [, (,), ^, $, ., #, and white space 

Future Proofed

Match myMatch = Regex.Match(@"A:\carpenter\walrus", 

                                                             Regex.Escape(@"\w") );

 A:\carpenter\walrus
Match myMatch = Regex.Match(@"A:\carpenter\walrus", @"\w");

 A:\carpenter\walrus

	@ - C# verbatim string – otherwise unrecognised escape sequence 

There is also corresponding an unescape function which removes all the escape characters from a regex perhaps useful if you want to reverse an escape 



	20
	Quantifiers

Quantifiers determine the number of times the preceding 

     sub-expression can occur and still be considered a match.

Common Quantifiers:
	\d\d\d etc



	21
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess
NB there is a space between the two ‘?’   

Credit: Dave Sparks www.regxlib.com 


	UK postcode

Space between the question marks


changed the example slightly


Note the lower case h



	22
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess

	Did not use \w as it also matches underscore



	23
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess

	Space between the question marks



	24
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess
\w is not used as it also matches an underscore

The 2nd 1 of SW11 is matched by the later \d


	

	25
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]?□?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1□1AA,

Queen of Hearts:Eh10□2QQ,

SW11ZZ- 13th Duchess
NB □ is a space


	Space between the question marks



	26
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess

	

	27
	Quantifiers – Example

Regex:

[a-zA-Z]{1,2}\d[0-9A-Za-z]? ?\d[A-Za-z]{2}
Text\Result : 

White Rabbit G1 1AA,

Queen of Hearts:Eh10 2QQ,

SW11ZZ- 13th Duchess

	

	28
	Comments

Inline (?#...) and X-mode #... (terminated by \n)

RegexOptions.IgnorePatternWhitespace

Be mindful how strings work with #

Regex myRegex = new Regex(




@"[a-zA-Z]{1,2}   # Post Code Area" +




@"\d[0-9A-Za-z]? # denotes Post Code District" +




@"\s?

  # whitespace"+




@"\d

  # Postcode Sectors." +




@"[A-Za-z]{2}
  # Unit Postcode",

                 RegexOptions.IgnorePatternWhitespace);

· Looks good, but doesn’t work! 

· Use Inline comment e.g. "\s?
(?# whitespace) or …


	RegexOptions.IgnorePatternWhitespace - Eliminates unescaped white space from the pattern and enables comments marked with #. 

Issue that \n terminates the # comment – but in the string there is no newline

Get no compile errors just a puzzlement why your Regex is only half working

Note use of \s could have used just a \ followed by a space - \s will also take a tab



	29
	Comments

Two different syntaxes: Inline (?#...) and X-mode #...

RegexOptions.IgnorePatternWhitespace

Be mindful how strings work with #

Regex myRegex = new Regex(




@"[a-zA-Z]{1,2}   # Post Code Area




    \d[0-9A-Za-z]? # denotes Post Code District




    \s?

  # whitespace




    \d

  # Postcode Sectors.




    [A-Za-z]{2}
  # Unit Postcode",

                 RegexOptions.IgnorePatternWhitespace);

· Newline (\n) now included! – VB either append & chr(10) &

    Or use (?#...) 


	Eliminates unescaped white space from the pattern and enables comments marked with #. 



	30
	Alternation- |

Matches any one of the terms separated by the | (vertical bar) character e.g. 

Curiouser|curiouser
Use parentheses to limit the scope e.g.

(four|4)th
Matches:

 The fourth day
The 4th day

	Regex equivalent to ‘or’, but for more than one character.

Character class matches one character Alternation
Left most wins



	31
	Atomic Zero-Width Assertions


	Atomic: cannot be divided or broken down further 

Zero- width Do not cause the engine to advance through the string or consume characters- work in the current position

Assertion: test, declare positively

Caret and \b appeared before

These will not work in a character class



	32
	Caret and Dollar

^[A-Z]{1,2}\d[0-9A-Z]? \d[A-Z]{2}$
RegexOptions.Multiline

· ‘Changes the meaning of ^ and $ so they match at the beginning and end, respectively, of any line, and not just the beginning and end of the entire string. ‘

DEMO


	Stricter Postcode Regex – no lowercase must have a whitespace – suitable for a text box validation

Caret and dollar enforces no other nonmatching characters either side of the postcode



	
	demonstrate the Regex designer Postcode -1 – explain tool show help file to explain @
Single line text box postcode

Shows that it only matches if the text box contains only a post code by typing in Queen 

Show that it fails if a space is added suggest string Trim() before the test
Now show a multi-line postcode -2

Show that it doesn't match because the multi-line option is not set.

Now Append a new line-doesn't work – why? because Windows text box puts a carriage return and a new line prove with a \s\s

\A
Match the beginning of the string (ignores the Multiline option)

\Z
Match the end of the string or before \n at the end of the string (ignores the Multiline option).

\z
Match must occur at the end of the string (ignores the Multiline option).

Open postcode Address 3

If capturing the data use a trim()



	33
	Word Boundaries - \b

Regex - :

\b
Text: 

'You mean you can't #%&?* take less,' 

said the     Hatter
Result:

'|You| |mean| |you| |can|'|t| #%&?* |take| |less|,' 

|said| |the|     |Hatter|

	Don’t Swear

Another zero-width assertion

\b match at the boundary between \w (alphanumeric) and \W (nonalphanumeric) characters

Notice:

· Start of string

· Does not understand English punctuation of can’t
· Underscore is a word character, a hyphen is not

· Has not consumed any text ie if it was a split would get spaces in the returned array – compare this with a \s (whitespace) which would eat the space

	34
	Non Word Boundaries - \B

Regex - :

\B
Text: 

'You mean you can't #%&?* take less,' 

said the     Hatter
Result:

|'Y|o|u m|e|a|n y|o|u c|a|n't |#|%|&|?|*| t|a|k|e 

l|e|s|s, |' |s|a|i|d t|h|e | | | | H|a|t|t|e|r

	Don’t Swear

The correlation - match non alphanumeric chars
\r\t will also match positively each

Note the extra space



	35
	Groups

Use Grouping for

· Alternation: (mousetraps|moon|memory)

· Quantifiers: (\s)+

· Backreference:  \1  \2  \3 

· Substitution: $1  $2  $3 

Unnamed Groups – (…)

· (\b\w+)\s+\1\b

· twinkle twinkle, little bat!


	Backreference: allows you to match a previous match

Substitution: insert a match within a replacement string 

Very powerful regex

Hope to convince you that referring to groups by number is a bad idea



	36
	Groups Continued 

Group Names (?<name>)

(?<Hours>\d?\d):(?<Minutes>\d\d)

· Substitution ${name}

· Match construct \kname

Grouping captures text

· Non capturing groups (?: … )

· RegexOption.ExplicitCapture prevents capturing for unnamed groups


	The name must not:

· contain any punctuation
· Contain spaces

· begin with a number. 
You can use single quotes instead of angle brackets 

Advised to refer to capturing groups by name


	37
	Substitution – Example
Regex:

(\S+)(.*\s)(\S+)
Replace:

$3$2$1
Text: 

say what you mean
Result:

mean what you say
string myResult = Regex.Replace(“say what you mean”,

” (\S+)(.*\s)(\S+)” , ”$3$2$1”);


	The .* matches any character – it is greedy – use it with care with large strings



	38
	Class: Match

Properties

Captures 
Collection of captures matched by the capturing group. 

Groups 
Collection of groups matched by the regex. 

Index 
Integer where the first character was found.

Length
The length of the captured substring

Success 
Bool indicating whether the match is successful. 

Value 
Captured substring from the input string.

Methods

NextMatch 
Returns a new Match object for the next match 

Result 
Returns the expansion of a passed replacement pattern.  


	Match object returned from the regex class’ match method.
Represents the results from a single regular expression match
Position starting at the position at which the last match ended (at the character beyond the last matched character).



	39
	Class: Group

Properties

Captures 
Collection of captures matched by the capturing group. 

Index 
Integer where the first character was found.

Length
The length of the captured substring

Success 
Bool indicating whether the match is successful. 

Value 
Captured substring from the input string.


	Each element of the Match’s Groups collection is a 

Group class

This contains a subset properties of Match



	40
	Class: Capture

Properties

Index 
Integer where the first character was found.

Length
The length of the captured substring

Value 
Captured substring from the input string.


	Subset properties of Match\Group



	41
	Match Captures Collection
Regex:                \d?\d\s(\w+)\s(\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Match Value = '18 January 1832', Position = 25

Match Capture 0 = '18 January 1832', Position = 25


	Captures collection property of the match class – seems to be useless

Only has 1 element which always equals Match.Value

	42
	Code

Regex r = new Regex(@"\d?\d\s(\w+)\s(\d\d)+");

Match m = r.Match(@"Lewis Carol was born on: 18 January 1832."); 





for (int i = 0; i < m.Groups.Count; i++) 

{


Group g = m.Groups[i];


Console.WriteLine("Group "+i+" = '" + g + "', Position = "+ 









g.Index);


CaptureCollection cc = g.Captures;


for (int j = 0; j < cc.Count; j++) 


{



Capture c = cc[j];



Console.WriteLine("Group Capture "+j+" = '" + c + 







"', Position = "+c.Index);


}


	

	43
	Group.Captures

Regex:                \d?\d\s(\w+)\s(\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = 'January', Position = 28'


Group Capture 0 = 'January', Position = 28

Group 2 = '32', Position = 38'


Group Capture 0 = '18', Position = 36


Group Capture 1 = '32', Position = 38


	First element of the group collection property of the match class – also seems to be useless

always equals Match.Value

	44
	Group.Captures

Regex:                \d?\d\s(\w+)\s(\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = 'January', Position = 28'


Group Capture 0 = 'January', Position = 28

Group 2 = '32', Position = 38'


Group Capture 0 = '18', Position = 36


Group Capture 1 = '32', Position = 38


	

	45
	Group.Captures

Regex:                \d?\d\s(\w+)\s(\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = 'January', Position = 28'


Group Capture 0 = 'January', Position = 28

Group 2 = '32', Position = 38'


Group Capture 0 = '18', Position = 36


Group Capture 1 = '32', Position = 38


	Key to understand this is the position of the quantifier +



	46
	Unnamed Capture Danger
Regex:                \d?\d\s(\w+)\s((\d\d)+) 
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = 'January', Position = 28


Group Capture 0 = 'January', Position = 28

Group 2 = ‘1832', Position = 38'


Group Capture 0 = '1832', Position = 36

Group 3 = '32', Position = 38


...
	Disadvantage of \1 or $1 automatically numbered notation is that it is if the regex is amended by inserting or removing a set of parentheses, all code that refers to the numbered captures must be rewritten to reflect the new numbering. Also with a complex expression with lots of parentheses, it is difficult to determine which of the two expressions actually returned a result



	47
	Noncapturing group 

Regex:          \d?\d\s(\w+)\s(?:\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = 'January', Position = 28'


Group Capture 0 = 'January', Position = 28


	RegexOption.ExplicitCapture

 Would suppress capturing for all the groups

	48
	Mixing Named & Unnamed Captures

Regex:          \d?\d\s(?<month>\w+)\s(\d\d)+
Text: 

Lewis Carol was born on: 18 January 1832.
Group 0 = '18 January 1832', Position = 25


Group Capture 0 = '18 January 1832', Position = 25

Group 1 = '32', Position = 38'


Group Capture 0 = '18', Position = 36


Group Capture 1 = '32', Position = 38

Group 2 = 'January', Position = 28'


Group Capture 0 = 'January', Position = 28


	Swapped the Groups around – Named groups go at the back of the queue

Naming the named and unnamed groups is not a good idea – If you use a named group refer to it by its name

 

	49
	Named Groups Indexer
Regex:          \d?\d\s(?<month>\w+)\s(?<year>(\d\d)+)
Text: 

Lewis Carol was born on: 18 January 1832.
Code:

Regex r = new Regex(@"\d?\d\s(?<month>\w+)\s(?<year>(\d\d)+)");

Match m = r.Match(@"Lewis Carol was born on: 18 January 1832.");

Console.WriteLine("Month = " + m.Groups["month"]);

Console.WriteLine("Year = " + m.Groups["year"]);


	Example of accessing to a named group



	50
	RegexOptions 

(?imnsx-imnsx) or (?imnsx-imnsx:   )

	Also works in a non capturing group


	50
	Summary

Regex – Literal & Metacharacters

Character Classes – [...], [^...]

Character Class Shorthands \w, \W, \s, \S, \d, \D, .

Character Escapes \ - Regex.Escape()

Quantifiers {n,m}, ?, *, +

Comments (?#...), #

Alternation |

Atomic Zero Width Assertions ^, $, \b

Grouping name\unnamed, Capturing


	

	51
	Signposts for the Road Ahead

Lookahead\Lookbehind 

Greediness\Laziness\Backtracking

Optimisations

Finally rules when writing a regex:

· Test, test, test

· Document\Comment

· Named groups (?<name>)


	Know your data

Document the how as well as the what, plus also the why not

	52
	Where to Get More Information

Books:

Mastering Regular Expressions - Jeffrey E. F. Friedl

O’Reilly – ISBN 0-596-00289-0

Websites:

www.regxlib.com
Free Tool:

www.sellsbrothers.com
	


