Trouble Shooting Bugs Improved with Jedi Power

Includes Example Projects:
EX_JclDebugUse.dpr

EX_JclDebugThreadedUse.dpr
Requires:

Jedi Code Library (JCL) Version 1.10 (Or Greater)

(The article is based on use of version 1.21)

I have included a very simple example of how I created a non-visual object, which uses the JclDebug unit to get information. Yes these is indeed a visual ExcepDlg.dfm/pas that comes with the JCL, but this work isn’t intended as a replacement, but as an example of how you can use the JclDebug unit and some of its routines to get that same useful information for you to do with as you please.

So What Is This Example?

Ok, what I am aiming to do is show you how the JclDebug can be used to hook to the notification mechanisms for exception handling, and how to receive and process some of that information into a useful form. I have done this as a nice and simple project, and tried to encapsulate specific elements into their own classes in a separate unit. These are very basic, and probably aren’t thread-safe (well… that really depends on how you use it). But it isn’t meant to be a solution to all your problems, but rather a means for you to learn the uses that the JCL units have in aiding your debugging of problems.

Ok – So Show Me More

Well, to simplify things I have created a demo with a simple exception occurring – one of those typical one-liners, that are easy to fix once you know where they are. This is the whole point of the JclDebug usefulness. It helps you identify where the exception occurred in our code by showing us the call stack up to and including the exception, so that we can indeed walk back up the call stack to find the point of origin of the problem, and try to resolve it.

But before we get started, if you haven’t already got the Jedi Code Library (JCL) installed on your system you will need to go get it. You can obtain it from the following URL:

http://sourceforge.net/projects/jcl/
You may well have to compile the JCL Packages for your specific version of Delphi, and then install those. However, I won’t talk you through that, I am sure you can all compile those packages based on the JCL ReadMe files.

Ok, now that we have the JCL installed lets get started.

So generating the Exception is as easy as pressing the “Add To List” button, but nothing will be trapped if you don’t first press the “Do Start Me” button.

Why have I done this? Well I wanted to show you how easy it could be to start the exception trapping process, and also show you the one-liner that helps generate the exception for us to trap.

So, start by pressing the “Add To List” button, and you will see the standard exception message. Nothing new here now is there?

Now press the “Do Start Me” button, and then press the “Add To List” button again. Now there is a change hey? Now we get lots of text inserted in to the Memo that is on our form.

Ok – not a lot particularly exciting at present hey? You get some useful information, and then a whole bunch of numbers in square brackets right? What you are seeing is the stack call list for everything up to the point of the exception. Hummm… We really want something more helpful then that.

Now go into your Project -> Options to the Linker tab and select “Detailed” in the Map file radio group box. Now press Ok, and recompile and re-run the application. Do the same again, “Do Start Me” to start the exception hooking and then “Add To List” to instigate our exception.

WOooHOooo! I see some unit names and class names beside all those numbers now, and even a couple of lines with really handy information like Line Number and Filename in brackets! Hummm… Ok, but why don’t the other lines have that information also? The other lines, you might have noticed, are the Borland standard units. To get more information about the lines and file names here, we need to enable the use of Debug DCU’s. Select Project -> Options and the Compiler tab. In the Debugging group box, check the “Use Debug DCUs” option. Now recompile and re-run the application.

WOooHOooo! Now we have information next to all the units about the line numbers and file name in of all the steps in the stack up to that point of the exception, which is our FList.Add line in uMainForm.pas right?

Wrong. The call to FList.Add does indeed start the process that generates the exception, but if you look at the top of the list the exception actually occurs in:

Classes.TList.Add (Line 2698, "classes.pas")

Interesting hey? Why is this? Well if you look at that code:

function TList.Add(Item: Pointer): Integer;

begin

 Result := FCount; // <- Exception is really here!
 if Result = FCapacity then
 Grow;

 FList^[Result] := Item;

 Inc(FCount);

 if Item <> nil then
 Notify(Item, lnAdded);

end;
Why is that? Well the FList field is a Nil pointer, so it doesn’t hold a reference to an existing object, so when the TList.Add method tries to get access to the FCount field it contains we get an Access Violation Exception generated, as there isn’t an object, and it doesn’t have this field, so we are performing an illegal memory operation. Viola.

Interesting hey? The line we thought generated the exception didn’t actually, it was generated inside the classes method that was implementing and trying to execute on an object reference that was not valid. Wow! I got all that information about something I thought was one line, and so quickly!

Example Summary

What I have tried to demonstrate here is that some bugs are more then they seem. Yes, we all know that FList.Add actually was the base reason which started the exception, but it wasn’t that the caused it but the operations inside the Add method of TList.

So now imagine those tricky bugs that your customer can generate, but you can’t simulate. Now imagine that you can’t install Delphi on their system to determine the cause. Starting to rip out your hair as to how to find this tricky bug? Sound familiar?

Well now you have seen a way to get such useful information that so long as you can get this information from your customer, you have a very very good start on solving the problem, and in a substantially shorter time period then perhaps might have been without this information.

Example Follow-up

Ok, but that MAP file is massive! I don’t want to have to deploy that each time I send out a new application.

Well, you don’t have to – but it is one of the ways that this information can be obtained. For example, copy this application exe file to a separate directory and run it from there. Same process, and all you get this time is just the hex numbers in square brackets again. Move the .map file into that directory and run it again and all of a sudden you get all that information back. However, you notice that the application operated as expected even without the information from the .map file.

Fortunately, those lovely people involved with the project have already seen a few of these potential issues, and have given us some options.

1) You can Compile the application with TurboDebug information by going to the Linker tab and selecting “Include TD32 debug info”

2) You can Compile the application and send the .map file also, as we have already seen.

3) You can Compile the application, and then use a utility that the JLC ships called “MakeJclDbg” found in the “examples\debugextension\tools” directory to create a compressed version of the .map file that you can use instead of the full-size file.

4) You can “Insert JCL Debug data” directly into your executable at Compile time. This is an option that you will see at the bottom of your Project menu if you have installed the “JclDebugIdeXX” package. What this does is produce a compressed version of the .map file and insert that into the executable files resource area, so that it can be obtained if need by the JCL code.

Wow. Now that is quite an array of options available to us hey?

Conclusion

Hopefully this will have been educational for you. However, I would like to make some closing points as well.

This approach is really useful in the situation where the customer has a bug that is causing issues, and you aren’t allowed to install Delphi on the PC to debug, or you haven’t access to their system anyway. This information can be generated from the Run-Time program, and then sent to you. That is the simplicity. Don’t think that it is a replacement for all the tools currently at your disposal like the Delphi IDE itself, or other Third-Party provided solutions, but it is exceptionally handy for getting information from that specific machine/user that is able to generate the problem.

It is in these situations that I have found its use to be the most valuable to me, and I hope that likewise you will all get benefit from it yourselves. With the different deployment mechanisms for the debugging information that it requires, it is also a very flexible solution. Allowing you to keep this important information separate from the client program (unless you see no harm in its deployment), and only providing it to the client if and when they have an error. However, it is important to remember that if you are going to provide it to a client when they have an error, then it MUST be the same information that was generated at the time of compile of that version of the program. As such, you may well want to store the .MAP or JclDebug file in your version control system at time of version stamping builds, so that you can be correctly informed by this code of where and when that error occurred in that version of your built application.

There are some Cons in this approach. By using this method you are potentially giving away very important information that could allow people to follow and understand the code being executed by your application, and I would be hiding things if I didn’t say that this information “potentially” could be used to get around security aspects of your application or even to try to clone it. However, I will say that it would take an exceptionally smart person to be able to do this from this information. If this is a concern for you though, you have already seen a solution to this problem. Build the application, but don’t build in the JclDebug data/TD32 debug info or deploy any of the various files forms of the .map file. Then if a specific machine/user encounters an error you can send them/put on the required .map or JclDebug file for the duration of the running to obtain the information you need to help you track down the bug, and then remove/delete the file from the system. This should still allow you to get all the benefits, but remove some of the security concerns.

Still, even with these concerns in place, I still use the system myself in a lot of applications, and am very happy with the time savings it offers me when trying to trace difficult bugs.

The JCL will always leave home with me if I need to work with Delphi, as it even fits on a floppy disk. I hope you will find it as useful as I have. (
Scott Price

Information Technology Sector Limited

Please note this document discusses the older examples available in this archive, which can be found in the following folder:

Examples\JclDebug - Old Examples

