Test-Driven Development

NUMERALS I to III

1. Create a console application

2. Add GUITestRunner to the uses clause

3. Add the single line: TGUITestRunner.RunRegisteredTests;
4. Create a new unit called testRoman

5. Add TestFrameWork, SysUtils to the uses class

6. Add this code to the interface section:
 type

 TRomanTest = Class (TTestCase)

 published

 procedure testRoman1;

 end;
7. Press Control-C

8. Implement testRoman1 as follows:
procedure TRomanTest.testRoman1;

begin

 Check(rc.toRoman(1) = 'I', '1 returned ' + rc.toRoman(1));

end;

9. Create a new unit called Roman : Compile and mention errors
10. Add this code to the interface section:

 type

 TRomanNumeral = class

 end;

11. Add Roman to the uses clause of testRoman

12. Add to the var section of testRoman1: rc : TRomanNumeral;

13. Add rc := TRomanNumeral.Create; to testRoman1

14. In unit Roman, add the toRoman method:

 type

 TRomanNumeral = class

 public

 function toRoman(n : integer): string;

 end;

15. Control-C and Implement toRoman as follows: toRoman := '’;

16. Add the following code to testRoman:

initialization

 RegisterTest('', TRomanTest.Suite);

17. Run example and demonstrate that the test fails

18. Alter toRoman:=’’ to toRoman := ‘I’ and re-run example, demonstrating the test passing

19. Add testRoman2 – demonstrate the checkboxes in DUnit and the test failing

20. Augment toRoman to handle 2:

 if n = 1 then toRoman := 'I'

 else if n = 2 then toRoman := 'II'
21. Add testRoman3 – demonstrate the test failing

22. Augment toRoman to handle 3.

23. Mention the need for refactoring – there’s a pattern here, refactor toRoman as follows:

function TRomanNumeral.toRoman(n: integer): string;

var s : string;

begin

 s:='';

 while n>0 do begin

 n:=n-1;

 s:=s+'I';

 end;

 toRoman := s;

end;

24. This example has demonstrated the TDD Mantra: Red/Green/Refactor

25. Notice the duplication in the tests; discuss SetUp/TearDown and refactor the tests:

unit testRoman;

interface

uses TestFrameWork, SysUtils, Roman;

 type

 TRomanTest = Class (TTestCase)

 private rc : TRomanNumeral;

 protected

 procedure SetUp; override;

 procedure TearDown; override;

 published

 procedure testRoman1;

 procedure testRoman2;

 procedure testRoman3;

 end;

implementation

{ TRomanTest }

procedure TRomanTest.SetUp;

begin

 rc := TRomanNumeral.Create;

end;

procedure TRomanTest.TearDown;

begin

 rc.Free;

end;

procedure TRomanTest.testRoman1;

begin

 Check(rc.toRoman(1) = 'I', '1 returned ' + rc.toRoman(1));

end;

procedure TRomanTest.testRoman2;

begin

 Check(rc.toRoman(2) = 'II', '2 returned ' + rc.toRoman(2));

end;

procedure TRomanTest.testRoman3;

begin

 Check(rc.toRoman(3) = 'III', '3 returned ' + rc.toRoman(3));

end;

initialization

 RegisterTest('', TRomanTest.Suite);

end.

Crux: Repeatedly re-running tests means you’ll spot errors the instant they enter the code-base…not days or months later.

NUMERALS VI to X (6 to 10)

Load Roman2 – highlight the duplicated code and note that this is a violation of the Once and Once Only ruling

NUMERALS XI to XIII (11 to 13)

Load Roman3 – highlight the duplicated code and note that this is another violation of the Once and Once Only ruling

NUMERALS XIV to XX (14 to 20)

1. Load Roman4 – Gradually uncomment the code in toRoman

2. Note that this code is starting to look very poor – can we refactor and tidy it up?

3. Load Roman5 – uncomment to let test 19 pass

4. Note that test 20 works because of the TDD process – we have a test for 20 and it passes.

5. Note that there is a lot of similarity between the first loop and the last loop. Remove the first if (n<=3) statement, re-run the tests.

function TRomanNumeral.toRoman(n: integer): string;

var s : string;

begin

 s:='';

 if (n=4) then s:='IV'

 else if (n=9) then s:='IX'

 else if (n=14) then s:='XIV'

 else if (n=19) then s:='XIX'

 else begin

 while n>=10 do begin

 s:=s+'X';

 n:=n-10;

 end;

 while n>=5 do begin

 s:=s+'V';

 n:=n-5;

 end;

 while n>0 do begin

 s:=s+'I';

 n:=n-1;

 end;

 end;

 toRoman := s;

end;
NUMERALS XXX to L (30 to 50)

1. Load Roman6

2. Gradually uncomment the code to allow the tests to pass

NUMERALS XXX to L (60 to 100)

1. Load Roman7

2. Gradually uncomment the code to allow the tests to pass

NUMERALS XXX to L (200 to 1000)

1. Load Roman8

2. Gradually uncomment the code to allow the tests to pass

NUMERALS OTHERS

1. Load Roman9

2. Uncomment extra test, run and demonstrate failure

3. Use the debugger to figure out 1975 – fix and re-run test – demonstrating passes

4. Explain that looking at this code, a table-driven approach is more suited – we’ve moved from a poor design to a design that suggests a cleaner design

NUMERALS FINAL

1. Load Roman10

2. Run, demonstrate

