Be excited, be VERY excited!

Product overview  of TMSSoftware’s IntraWeb Pro component set by Allen O’Neill

[image: image1.png]
TMSSoftware is one of those companies who keep pumping out new technologies wherever they see a niche. Unlike some other component suite providers, TMS have managed to rise above the “Me too” syndrome, and genuinely provide useful and, in general, unique components that add real power to your development arsenal.

Over the coming months, I will be reviewing in detail the entire TMSSoftware range. This covers Grids, HTML, edit controls, system controls, classes for interfacing with CE, etc. One of the things that TMS have done well is to think about how they can integrate their existing classes and functions together to make something bigger. Look at their base class for HTML formatting for example. This class allows you to use a mini HTML syntax to format strings, layouts, etc. They then use this as a base in their plethora of components to allow you easily to give something the exact look and feel you require. From a component builder’s point of view, they are using OOP the way it was intended to be used – and this is superb news for developers who use their products.

This month I am taking a look at the IntraWeb (IW) pack supplied by TMS. Entitled TMS Intraweb Component Pack Pro, this set of classes expands basic IntraWeb functionality to give you must have components.  IntraWeb in itself is superb – using IW, I now develop web solutions in days that used to take weeks. For those of you who haven’t used IW yet, do take some time out to check it out. It’s included in Delphi7 and is available as a trial download at http://www.atozedsoftware.com. IntraWeb is putting the RAD back in Web development for Borland developers – in my humble opinion, it’s what WebSnap should have been but isn’t. If you look at the BUG events listing, you will see there are a number of IW demonstration sessions on all over the country (including mine in Dublin). In addition, we are considering a Masterclass in IW if there is enough interest. [Allen is taking every opportunity to solicit your support for this masterclass! If you are interested, please register your interest on the suggestions-for-sessions newsgroup or by emailing the BUG office. Ed.]

There is a perceived downside with IntraWeb, however - because it allows me to develop within Delphi as if I were designing a standard Delphi application, I almost expect to have access to the standard VCL components that I am used to. A case in point is the calendar control – in the base IntraWeb component pack, there is no drop in solution – so you have to write your own … unless you were clever enough to have purchased the IntraWeb pack from TMS that is. 

Clever enough? Nope – this is nothing about being clever – it’s about being pragmatic. TMS have priced their components so that it’s not clever NOT to purchase them!  Huh? … well think about it – at $95US, you are getting one of the best bargains available from a web productivity point of view. To develop even 10% of the functionality of even one of their components alone would take you a few hours, and a few hours has got to be worth $95 of your time. For $95, you get not one, not two, not three, but over 40 IntraWeb productivity enhancement components – “TMS … come on down”!!!. Before even going into the full evaluation of the component set, I can confidently say that getting your little paws on these components is not a purchase decision – it’s a complete no-brainer!

Mini HTML 

Earlier I mentioned Mini Html and its use at the core of so many TMS components. As this concept is central to such a great number of TMS components, let’s discuss it first. Mini html formatting allows the developers to display data in whatever manner they wish. “Whatever manner” means, “whatever manner”, in other words if HTML can format it, HTML enabled controls can display it!

Mini html syntax is a reduced sub-set of standard html (with a little more). It does not for example include the “DIV” tag, but does include <B></B>, <U></U>, <I></I> etc. The following lists the entire range of tags covered:

(Note: where I have commented “web standard”, there is no need for further explanation. For example, the “web standard” for the bold tag (<B>) is <b> : start bold text </b> : end bold text. For further explanation of these standard tags, look at any of the online resources such as www.irt.org)

B : Bold tag – web standard

U : Underline tag – web standard

I : Italic tag – web standard

S : Strikeout tag – web standard
HR : horizontal line – web standard
BR : linebreak – web standard

SUB : subscript tag – web standard
SUP : superscript tag – web standard
BLINK : blink tag  – web standard
UL : list tag – web standard
LI : list item – web standard
A : anchor tag – web standard

FONT : font specifier tag – web standard

P : paragraph – web standard

BODY : body color / background specifier – web standard

IND : indent tag

This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels. For example, <IND x="75"> means indent by 75 pixels.

IMG : image tag

<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"] alt="specifier:name"] > : inserts an image at the location where normally one would put in an absolute or relative image source in the SRC parameter of the tag, with mini HTML the contents of the source tag value is broken into two parts: “specifier” and “tag”. These parts are separated in code using a colon “:”.

The “Specifier” value can be:

idx : name is the index of the image in the associated imagelist

ssys : name is the index of the small image in the system imagelist or a filename for which the corresponding system imagelist is searched

lsys : same as ssys, but for large system imagelist image

file : name is the full filename specifier

res : name of a resource bitmap (not visible at design time)

no specifier : name of image in an PictureContainer


Some examples of the IMG tag would be:

 
This is an image <IMG src="idx:1" align="top">

This is an image <IMG src="ssys:1"> and another one <IMG src="ssys:worfile.doc">

This is an image <IMG src="file://c:\my documents\test.bmp">

This is an image <IMG src="res://BITMAP1">

This is an image <IMG src="name">

SHAD : text with shadow – formats the wrapped text with a shadow
 <SHAD> : start text with shadow

</SHAD> : end text with shadow

Z : hidden text – the wrapped text is hidden

<Z> : start hidden text

</Z> : end hidden text

HI : hilight  - the wrapped text is high-lighted
<HI> : start text highlighting

</HI> : stop text highlighting

E : Error marking – the wrapped text is given an “error” marking (little red underline squiggle)

<E> : start error marker

</E> : stop error marker

Special characters
If the above is not enough for you, there is also handling for special characters:

&lt; : less than : <

&gt; : greater than : >

&amp; : &

&quot; : "

&nbsp; : non breaking space

&trade; : trademark symbol

&euro; : euro symbol

&sect; : section symbol

&copy; : copyright symbol

&para; : paragraph symbol

DB-aware field tag

For DB-aware controls the datafields can be represented by inserting a custom tag that is pre-fixed by a hash symbol (#) and includes the name of the datafield. 

Eg: (#My_Field_Name). Note that DB tags use ROUND brackets “(“ “)”.

Enter the components

I always think the best thing to do when reviewing a component set is to run through each of the components in turn, examining what it does and how it can save you time and increase productivity. The only thing I dislike about the TMS Software’s offering is the way it lays out its component set for IW – it does not separate data-aware and non data-aware controls into separate tabs – but if that’s the only criticism I have, it’s a compliment to the guys at TMS! Actually, it’s not really that bad – the main DB aware controls are the first ones you hit from left to right on the TMS/IW palette – I just prefer them to be separated into completely different palettes.

	[image: image2.bmp]
	TIWDBHTMLLabel


The DBHTMLLabel component allows you to display a field value from a dataset using HTML formatting. Unlike normal db-aware label/text controls, there is no property in the inspector for the datafield itself. This is because, as we saw in the overview of mini HTML , the reference to the field is actually placed in the htmltext property. The htmltext property is where the real work is done, and as we move through this suite, you will see it pop up its little head at every available opportunity. When we click on the htmltext property in the property inspector, a dialog form pops up that allows us to format, and preview the output when the component is rendered to the browser canvas.

[image: image3.png]
If we play with the mini HTML a bit, you can see we can get some pretty nice results:

[image: image4.png]
The interesting thing about this component is that we can use it to bring together a set of dataset values in one place. For example, if we had client contact information, we could use this one control to display them all in perfect HTML format. This minimises coding and keeps everything in one place.

[image: image5.png]
Accessing dataset based blob images could not be easier – if the component detects the database content is an image blob, it will render it out as an image. For those of you who have not used Delphi to develop web apps before, it’s a case of “ho hum – so what”.  However if, like me, you have done any serious web development, you can clearly see the immense time savings associated with just using this component alone. Using traditional Delphi techniques and HTML template files, to achieve the above would have involved not only writing a HTML template, but also an OnHTMLTag event that populated the relevant data values into the tag fields:

If TagString = ‘COMPANY’ then


ReplaceText = MyTable.FieldByName(‘Company’).AsString

else If TagString = ‘CONTACT’ then


ReplaceText = MyTable.FieldByName(‘ContactName’).AsString

etc…

Using a combination of IW and TMS, all that work is now a thing of the past.

That is not to say that the OnHTMLTag event is depreciated – it’s still there in the majority of components if you require it (for some obscure reason).
	
[image: image6.png]
	TIWDBAdvEdit


The DB Advanced Edit component adds database connectivity to the standard TMS IW component that we will examine later. Like most data-aware controls, you point this to a dataset and specify the field within the dataset it is to link to.

This control will generally be used most where you wish to link an edit to a datafield so whatever changes the user makes get posted straight back to the associated dataset. Pretty obvious from a typical Delphi data application point of view but, like the rest of IW, pretty revolutionary when developing for the web.

Relevant properties for this component would include:

SubmitOnReturn – this captures the hitting of the return or enter key and will submit the data back to the server, rather than advancing to the next control. Handy if subsequent control content is to be based on the entered values of a particular control.

Color and FocusColor – pretty obvious these ones, but very cool.  As you can see from the screenshot below, when you select the control, its colour changes, making it very obvious to the user what field they are currently on. These are the types of little things that make IW and TMS a delight to use. Having these properties means I no longer have to hand-code JavaScript to achieve the same effect.

[image: image7.png]
PasswordPrompt – setting this property to “true” turns the control into a password edit (i.e.: the input is masked with **********).

EditType – This allows on the fly formatting and input restriction for the data value in the following formats: Float, Hex, Lowercase, MixedCase, Numeric, String, Uppercase.

This component saves you time as it negates the need to write JavaScript or server-side validation of incoming data. If you specify the type is numeric, then the user is not allowed to enter text data. If you specify the data should be in uppercase, then even if the user forgets to turn on their CapsLock, their input gets converted to uppercase anyway.

Signed - When true, this allows signed input in Numeric and Float mode
DecimalPoint – allows you to define what character to use as a decimal point delimiter. The default is a comma.

	
[image: image8.png]
	TIWDBAdvLUEEdit


The db Lookup edit control adds on the fly lookup capabilities to the base db edit control. I would call it more of an auto complete control than a lookup, although it does indeed look up values.  The basic concept behind this control is that, as you type, it looks at what you are typing, and tries to find a match to complete the entry for you automatically in a lookup list. The best way to see this in action is to look at a series of screen shots:

In my lookup string list, I have three entries:

Master of the world

Master of the universe

Master of the university
Thus, as the user types, the control tries to auto-complete based on the values in the lookup list.

[image: image9.png]
	
[image: image10.png]
	TIWDBCalendar


To be perfectly honest, this one single control is the reason I started looking at TMS for IW in the first place. The majority of the web apps we develop at Springboard are back end engines for extranet solutions or back end solutions for web design houses. Invariably, these solutions call for some kind of date control, mainly for online reporting purposes. In the past, we had either restricted ourselves to dropboxes that displayed year in one, month in another and day in another, or used a popup window with generic JavaScript data code we snatched from IRT.org. This control, however, offers us a new level of flexibility and, in addition, can be tied directly to a dataset, making it even more useful.

[image: image11.png]
As you can see from the above screenshot, the control is clean and extremely flexible. You can specify individual cell colours, background images, date selector button images, highlighted date colours, etc. In short, everything I would expect from a good calendar control, and more. In addition, there are a number of handy events that occur client side where you can integrate JavaScript to validate date ranges etc without having to go back to the server. These are contained in the ClientEvents property:

DateClick,NextMonthClick,NextYearClick,PrevMonthClick,PrevYearClick.

The following is an example of JavaScript inside one of these events:

alert("Client event for date selection");

[image: image12.png]
	
[image: image13.png]
	TIWDBDatePicker


The db date picker operates in much the same way as the date picker in the VCL. Click the button to the right of the control and a calendar pops up.

[image: image14.png]
	
[image: image15.png]
	TIWDBScrollPanel


The db scroll panel allows you to have relatively large amounts of information in one place. To see more information, the user clicks up or down to scroll the information. If you think ahead, you can include links to other web pages in your data – because when the panel renders, it renders all the mini HTML tags in the data.

[image: image16.png]
You can specify that the scrolling of data in the panel occurs either on a Click of the up/down buttons, or when the user hovers their mouse over the up/down buttons.

	
[image: image17.png]
	TIWDBSmartPanel


The smart panel takes advantage of Z-Index in HTML. In a nutshell, it allows you to have a panel whose titlebar you click to expand/contract the contents of the panel. A few screenshots show how it works:

[image: image18.png]
Contracted – note the dummy text sitting under the panel.

[image: image19.png]
Expanded – note that the dummy text is now overlapped by the expanded panel which now has a higher Z-order that the dummy text.

Naturally, the Smart-panel allows us to use mini HTML. This makes this component ideal for situations where you want to fit more information on screen but space is tight.

This is, of course, the DB version of the panel and thus the content for the panel is taken from your associated dataset.

	[image: image20.bmp]
	TIWHTMLLabel


Ok – we have arrived at the non-db aware components in the collection. The HTMLLabel has exactly the same functionality as the  DB aware one described earlier except it is not obviously db aware.

	
[image: image21.png]
	TIWDateLabel


The datelabel is one of a number of very useful just drop it on components in this collection. Its basic function is to display the current date to the user. The only property worth mentioning in this control is the DateFormat. This allows you to specify the output format of the date, which is quite important when building web solutions for international customer bases.

Setting a format of: dddd dd mmm yyyy
Gives browser output of: Sunday 17 Nov 2002 

	
[image: image22.png]
	TIWClock


Similar to the DateLabel above, except this component outputs the current time and updates itself, inplace, every second. 

Example:

15:23:01

15:23:02

15:23:03

	[image: image23.bmp]
	TIWAdvEdit


Exactly the same functionality as the DB version without the dataset connectivity

	
[image: image24.png]
	TIWAdvLUEdit


Exactly the same functionality as the DB version without the dataset connectivity

	
[image: image25.png]
	TIWDateSelector


If you recall, earlier I was talking about how typically, instead of using a Calendar control when I needed user interaction with dates, I used a combination of year/month/day combos.  This component is those three combos brought into one component. Drop it on your IW form and away you go. No need to populate the values – everything is done for you.

[image: image26.png]
	
[image: image27.png]
	TIWEmailEdit


Here’s another of those gosh that’s handy controls that are splattered throughout the TMS-IW collection. Drop this component on your IW form and, by itself, it will take care of determining if a value entered in an email address field is actually in a valid format. You can customise the error message it displays when an incorrect format is located, and override the error action itself using the OnSubmit event provided. 

	[image: image28.bmp]
	TIWHTMLCheckBox


What is there to say about a checkbox? It checks and unchecks – big deal. Well, the big deal here is that as usual, it isn’t just a normal checkbox.  It encapsulates the mini HTML  formatting capabilities, therefore you can control the display to a finite degree – very useful.

	[image: image29.bmp]
	TIWHTMLList


Now this component is powerful yet simple. By allowing each item of a standard list to have the mini HTML functionality, we can make a boring standard list into something quite interesting. The screenshot below shows you something I haven’t discussed before – the fact that almost all the controls display at design time just as they will at runtime.

[image: image30.png]
	[image: image31.bmp]
	TIWFilePicker


Another good one – this component gives an edit box and a button that, when clicked, will open a file-select dialog that allows the user to select files for uploading via a webpage.

	[image: image32.bmp]
	TIWStaticMenu


Static menu provides a basic array of buttons that you can use as a standard page navigation menu. It uses mini HTML to allow you to customise the items in the menu and, to allow you to keep a consistent look and feel,  its  properties to allow you to change both the standard visible colour and the mouse OnOver (hover) colours. 

[image: image33.png]
	[image: image34.bmp]
	TIWMainMenu


A menu control for the web that actually works like a main menu, in other words, it does not pop until you click the menu items themselves – superb. One of the problems I have had in the past with web menus it that users expect them to work like windows menus and don’t expect them to pop as soon as their mouse hovers over them; this seems to confuse them. Confusion over, Mr. User - enter the TMS solution.

[image: image35.png]
Actually this is particularly cute because it integrates with TMainMenu. In other words, you design your menu with TMainMenu as normal, drop the TiwMainMenu on your IW form, then assign the menu property of TiwMainMenu to your TMainMenu.

	[image: image36.bmp]
	TIWSideMenu


This has the same functionality as the TiwMainMenu (above), except it does its thing on its side.   In other words, instead of emulating a standard menu where items populate left to right, it associates itself with your TMainMenu and the items populate top to bottom.

[image: image37.png]
	[image: image38.bmp]
	TIWPopupMenuButton


[image: image39.png]
Drop a button on the IW form, associate it with a TPopupMenu. When the button is clicked, et voila! .. there’s your popup menu. Very simple, very useful, and it works.

	[image: image40.bmp]
	TIWCalendar


The functionality of this is exactly the same as the DB aware version we discussed earlier.

	[image: image41.bmp]
	TIWDatePicker


The functionality of this is exactly the same as the DB aware version we discussed earlier.
	[image: image42.bmp]
	TIWAdvImage


The AdvancedImage component basically allows you to have the tms/iw combination take care of our JavaScript image rollovers for us. Drop the component on the form, specify a static image and a rollover image and off you go. As usual, a real time saver.
	[image: image43.bmp]
	TIWFadeImage


On display, initially an image that is assigned to the picture property of TiwFadeImage appears washed out (the opacity is set to about 25%?).  When your mouse moves over the image, however, it fades up to 0% opacity. Rather cute and has definite possibilities.
	Before fade
	After fade

	
[image: image44.png]
	
[image: image45.png]


	
[image: image46.png]
	TIWAdvImageButton


This encapsulates a tri-state JavaScript rollover for images. You get to choose an image for unfocused, MouseOver and OnClick.

	[image: image47.bmp]
	TIWHotSpotImage


Here at Springboard we are currently examining a very large project which involves working extensively with ImageMaps. The real pain we envisioned was having to go and write a hotspot editor that would integrate all those polygon references so we could work with them in Delphi. In a nutshell, HotSpotImage takes care of all the nitty-gritty of managing the co-ordinates for you, within the IDE. According to Bruno at TMS, there is also a method for using the editor outside the IDE so you can get someone else to work up the polygons themselves, leaving you simply to integrate everything back into your webapp.


[image: image48.png]
	
	


	[image: image49.bmp]
	TIWPaintbox


This is the ultimate in flexibility. In summary, this component allows you to draw to a web canvas, exactly as you would a form canvas. At the time of writing, my deadlines were getting rather tight so I asked TMS to provide an example of how it works. First, the output:


[image: image50.png]
Now the code:

procedure TformMain.IWAppFormCreate(Sender: TObject);

begin

  drawgradient(tiwpaintbox1.canvas,clSilver,clWhite,64,rect(0,0,160,32),true);

  with tiwpaintbox1.canvas do

  begin

    setbkmode(handle,TRANSPARENT);

    font.Name := 'Verdana';

    font.Size := 12;

    font.Style := [fsBold];

    textout(10,10,'TMS software');

    pen.Color := clGray;

    moveto(0,32);

    lineto(160,32);

  end;

end;
procedure DrawGradient(Canvas: TCanvas; FromColor,ToColor: TColor; Steps: Integer;R:TRect; Direction: Boolean);

var

  diffr,startr,endr: Integer;

  diffg,startg,endg: Integer;

  diffb,startb,endb: Integer;

  iend: Integer;

  rstepr,rstepg,rstepb,rstepw: Real;

  i,stepw: Word;

begin

  if Steps = 0 then

    Steps := 1;

  FromColor := ColorToRGB(FromColor);

  ToColor := ColorToRGB(ToColor);  

  startr := (FromColor and $0000FF);

  startg := (FromColor and $00FF00) shr 8;

  startb := (FromColor and $FF0000) shr 16;

  endr := (ToColor and $0000FF);

  endg := (ToColor and $00FF00) shr 8;

  endb := (ToColor and $FF0000) shr 16;

  diffr := endr - startr;

  diffg := endg - startg;

  diffb := endb - startb;

  rstepr := diffr / steps;

  rstepg := diffg / steps;

  rstepb := diffb / steps;

  if Direction then

    rstepw := (R.Right - R.Left) / Steps

  else

    rstepw := (R.Bottom - R.Top) / Steps;

  with Canvas do

  begin

    for i := 0 to Steps - 1 do

    begin

      endr := startr + Round(rstepr*i);

      endg := startg + Round(rstepg*i);

      endb := startb + Round(rstepb*i);

      stepw := Round(i*rstepw);

      Pen.Color := endr + (endg shl 8) + (endb shl 16);

      Brush.Color := Pen.Color;

      if Direction then

      begin

        iend := R.Left + stepw + Trunc(rstepw) + 1;

        if iend > R.Right then

          iend := R.Right;

        Rectangle(R.Left + stepw,R.Top,iend,R.Bottom)

      end

      else

      begin

        iend := R.Top + stepw + Trunc(rstepw)+1;

        if iend > r.Bottom then

          iend := r.Bottom;

        Rectangle(R.Left,R.Top + stepw,R.Right,iend);

      end;  

    end;

  end;

end;

Ok, you could perhaps go and write to a bitmap canvas on the fly as well - I just like the TMS approach to things.

	
[image: image51.png]
	TIWCountryCombo


It doesn’t do a great deal, but what it does do saves time over and over again. The country combo, as the name suggests, contains a pre-built list of country names. Now, how many times have we gone off to another website to look in the source to get a list of those names? Don’t bother any more: it’s on your pallete – just drop it on and keep coding!

	
[image: image52.png]
	TIWPersistentEdit


This is an edit control with cookie persistent value. If Text property is blank, the component tries to retrieve the cookie value. The last modified value is saved to a cookie. 
	[image: image53.bmp]
	TIWScrollPanel


This has exactly the same functionality as the db aware version with no dataset links.

	[image: image54.bmp]
	TIWTickerPanel


This is one of those TickerTape thingies, with a slight twist. The twist is you can expand the panel so it drops to show all items in the ticker-tape collection. This control seems remarkably similar to the Smart-Panel, except the ticker panel shows items in its title-bar, and changes the text in the titlebar every few seconds.

	
[image: image55.png]
	TIWSmartPanel


Exactly the same functionality as the db aware version with no dataset links.

	
[image: image56.png]
	TIWOutlookBar


Some visual metaphors work very well in that users like them and they solve a difficult problem. The outlookbar is one of these. The outlookbar from a both and user’s and programmer’s point of view is clever, mainly because it allows you to group items logically in visual collections. TMS have managed to bring this metaphor to the web in IW, and it is very well implemented. 

[image: image57.png]
	
[image: image58.png]
	TIWAdvancedSpinEdit


Spin edits are spin edits. Personally I don’t like them. This one does what its meant to do, client-side.

[image: image59.png]
	
[image: image60.png]
	TIWPopupMenuLabel



[image: image61.png]
This component does the same trick as the PopupMenubutton – except this time it’s a label. 

	[image: image62.bmp]
	TIWCCNumEdit


Yet another little time saver. This time it deals with credit cards. Drop this on your form, tell it what cards you are accepting (Mastercard, Visa, Amex, DinersClub, Enroute, Discover, JCB) and it will do all that lovely checksum stuff to ensure the number is valid before you start processing it.


[image: image63.png]
	[image: image64.bmp]
	TIWCCExpEdit


This links in with the credit card number validator and ensures that credit card expiry dates entered are in the future.

	[image: image65.bmp] [image: image66.bmp] [image: image67.bmp]
	Linked Lists


There are times when you need the user to make selections, where you need them to move things from one list to another. This collection of controls allow you to do that, client side, with ease.

	
[image: image68.png]
	
[image: image69.png]
	
[image: image70.png]


	
[image: image71.png]
	TIWColorPicker


I’ve never had reason to have users select colours browser-side for anything but, if you do, here’s an easy way to do it. 
[image: image72.png]
	
[image: image73.png]
	TIWAdvWebGrid


Grids of some sort have always been a trademark of TMSSoftware. Personally, I have never seen anything like it for the web – perhaps there are solutions out there like this, but none that has given me the opportunity to download and try.


[image: image74.png]
I can think of plenty of opportunities immediately for using this component in my work. In fact, technologies like this often bring ideas and concepts to mind that inevitably get mentioned to clients, and usually get turned into paid projects. I like it, and I’m starting to think!

Roundup

There are two components I didn’t mention – these are TiwDBAdvSpinEdit and TiwDBAdvWebGrid. We have already discussed their non-data aware versions so there is no point in going into them.

Before I finish, I’m going to say it again – if you develop for the web, and you use IntraWeb, just go and get this component set. If you have Delphi 7 and you develop for the web and still aren’t using Intraweb, good luck to you.  I’ll be waiting in the pub, drinking your pint. Happy coding.

Allen O’Neill produces innovative communications solutions for Springboard Technologies Limited in Dublin, Ireland (European capital of stag parties!).  He is heavily involved in the OpenSource community through Indy, is an active speaker at various technical gatherings and is currently co-authoring a book on Indy with Hadi Hariri and Chad Hower. Allen has broad technical expertise, covering Internet, sockets, database, systems architecture, project management and OOP. When not chained to his keyboard, Allen enjoys spending what little spare time he has riding his motorcycle unreasonably fast, and playing with his two one year old puppies, Odo and Spike. Allen may be contacted at allen_oneill@hotmail.com

_1099051721

_1099115372

_1099116809

_1099117761

_1099117836

_1099118574

_1099121154

_1099118142

_1099118471

_1099117797

_1099117141

_1099117403

_1099117131

_1099116294.doc
[image: image1.png]


_1099116446

_1099115830

_1099113928

_1099114290

_1099114829

_1099113943

_1099054947

_1099055293

_1099054855.doc
[image: image1.png]


_1099046499

_1099047897

_1099051211.doc
[image: image1.png]


_1099046787

_1099044755

_1099045556

_1099042048

