Good afternoon, my name is David Smith and I’m from the distant shores of Lancaster where I work in the idyllic location of Kirkby Lonsdale for a small specialist company of fund managers called Border Asset Management Ltd who kindly let me come on days out like this and pay me to do it. I now work for them as their IT/Operations Manager and as a little plug for them, can I suggest that when you have made your millions, you let them make even more for you with those millions as they are a great bunch of people who regularly achieve far higher financial performances than the norm.

As a way of introduction, I think my talk today is as a result of friendly persuasion by Joanna and Dan AND the idea that these meetings cannot continue indefinitely with the same set of speakers providing the entertainment and that more of us need to get involved AND from the response to my question at one of the latter meetings about whether you would like such a talk.

Admittedly the concept of using Excel within your applications is not new, on the DIL CD ROM there are articles there from 1998 about how to do this, but perhaps some of you have never tried this before and I hope that for you this will give you some ideas that can you can lodge deep in your brain for that time when you face a particular problem. For those of you who have heard it all before I hope it will just be a gentle reminder of what can be done.

However, it will be a very practical talk I hope rather than something concentrating on the technicalities of the subject. My skills as a Delphi programmer on a scale of 1 – 10 are probably less than 5 BUT all my life I have been a bit of a fixer. I have been doing IT Consultancy for over 10 years and I think my fixing ability has helped in this area of trying to provide solutions to small companies as they grow their IT systems.

Many years ago now in the early days of computing, when people asked me about programming, I always said that for me ‘it was like building and flying model aeroplanes which never crashed or if they did, the crash didn’t cost you an arm and a leg’.

Now I fly model helicopters and when thinking about this talk I realised I likened my application programming more than I realised to my building and flying of helicopters. I don’t really know how micro solid-state gyros work or how small batteries can provide 60 amps BUT what I do know is how to connect them together to make something that works. I don’t understand the inner workings of some of the core components involved in today’s talk but what I do know is how to connect them together to create an application that solves the clients problems. Although I would love to have the time to fully understand those inner workings, at the end of the day, I guess more developers want to produce the results with the minimum of effort and time.

So today we are talking ‘practical use of Excel’.

So what reasons are there for even considering integration of Excel into your applications.

Excel, universal, data in workbooks, also has functionality not found in Delphi standard, data back to workbooks

With this is mind I hope that this next hours session will be a lightweight look at the practical use of Excel. I will be using Delphi 7 and Office 2003 in the demos but I’m sure that everything I do will work in versions back to Office 2000! I haven’t tried this sort of integration using either Vista or Office 2007 so I don’t know how that will work as yet.
The methods of getting Excel data and Excel functionality into your Delphi (I presume C++ too) application is through ADO or Automation, each offers attributes best suited to certain type of situations.

ADO

I have referred to Zarko Gajic’s web site for help with some of this material and did e-mail him to ask him for permission to refer to this code in the talk but I haven’t had a reply as yet. So ‘Thanks to Zarko’ and I haven’t used any of his code directly but some of his ideas.

· Excel not required

· Interface through ADO presents itself as ‘database like’

· SQL Query commands that you are more than likely to be familiar with can be used

· Low overhead of system resources (i.e. Excel not loaded into memory)

Let’s have a look at how you can use ADO to work with Excel workbooks.

Drop an ADO Connection component onto a form and set its connection string to point to the relevant workbook. Easy – well yes and no. I haven’t found a method of setting the connection string at design time; the ADO connection wizard doesn’t seem to allow you to specify an Excel workbook. So we have to set the connection string property at run time. Be careful with the formatting of this connection string; any small mistakes will give the error of ‘Could not find installable ISAM’ and searching on the Net will almost certainly make you think you need some new software or updates – ignore this and get the formatting correct.

I guess the ‘Excel 8.0’ refers to the ADO objects installed in your version of Windows rather than anything to do with the version of Excel you have loaded – remembering that we don’t even need Excel on this system to run this type of connection.

Once the connection string is correct, you can connect to it an ADO table, query, command or dataset component and specify the type of operation you want to perform.

Note – don’t try and connect to password protected workbooks or worksheets – it won’t work.
Note it may be worth setting the ADO connection’s ‘LoginPrompt’ property to false.

Each named range in Excel and worksheet name is represented through your ADO connection as a database table and therefore you can work with these sheets and ranges just as though they were database tables. You can read data, edit, insert and delete data with this connection.
In this example I have used the ADO connection’s ‘GetTableNames’ method to retrieve these table names and populate a TMemo.
Let’s see what this results in by looking at the application – do a read workbook and see table names.
Close app first.

Open the workbook with Excel (open excel first) and create a new named range (no spaces) and a new sheet (pop in some data) and save the workbook, do a re-read.

I have added a mouse down event on the memo component so that we retrieve the relevant column/field names and column/field types from the relevant table as well as the data in that range/sheet.

Fill the relevant ADOQuery component SQL string with the expression such as:

SELECT * FROM [rangename]

We use the Fields.DataType property of the ADOQuery component to get the field attributes. Note that ADO treats the first row of the range as field names UNLESS you specify this in the ExtendedProperties section of the connection string (HDR=NO) in which case ADO automatically assigns the column names as F1, F2 etc.
The ADO connection reads by default the first 8 rows/records to try and determine the field types, you can change this by amending one of the ExtendedProperties; use MaxScanRows = n (0 -16) where 0 tells ADO to scan all rows.

Every field from an ADO data source can be of just 6 types:

Numeric data gets translated to a Delphi float type.

Text data gets translated to WideString type.

Memo data gets transaleted to memo type.

Currency data gets translated to Currency type

Boolean gets translated to Boolean type

Date gets translated to DateTime type

Speaking of formulae, there is no reason why ADO cannot read the results of Excel formulae. In fact we have been seeing it in these examples.

Discuss Formulae – fields that are retrieved where the underlying Excel cell is a formula are treated as read only and therefore any attempt to edit the data in that field will cause an error.
Note as well as ‘named ranges’, you can read areas of worksheets by using the Excel format of [Sheet2$A1:E200] – although I couldn’t get this working!
Note that this read of data seems pretty quick, use the example of the large number of records (if 65000 records is a lot)
Editing

Editing of data can be done via ADO – with records edited and posted just as though there were more traditional database records

Inserting of data records can also be performed but note that IF the underlying cells are not formatted or if relevant formulae cells are not ‘filled in’, then the record becomes somewhat useless. Also note that you must be referring to a large enough range – whether that be a sheet name or a range name - to accommodate the new rows. You cannot add records that would try and force ADO to expand the underlying range!
but deleting of whole records (Excel rows) cannot as rows in Excel are not completely compatible with traditional database records; you can blank every value in record (other than any formulae field) but that is about it.
In summary, it is obvious that using ADO in this way for Excel workbooks is only suitable for those workbooks where there is a predominance of data and where that data is uniformly laid out as table like data. Workbooks that have data and formulae located in ‘random’ locations all over the place aren’t that suitable for this approach using ADO.
Show them the demo of the auto file reader

Automation using Excel

Did I really put DDE in the spiel I sent to Joanna – that perhaps demonstrates my lack of knowledge – obviously I should have referred to what we are going to see as Automation; DDE was the very first incarnation of some of these techniques which Microsoft have developed into, and refer to as, Automation.

In my simplistic view, Automation means allowing you as a developer to offer potentially greater facilities within the application with less development time. As a developer that only writes for specific customers with specific needs, I can determine at the outset if the relevant Automation facilities are needed and exist on the target systems – as a developer trying to write applications for world-wide sale, that is much harder and one would have to worry about adding these facilities into your software.

Anyway, on with the show. – POWERPOINT NOW
I find the syntax for using and connecting Automation components difficult to understand and work with and perhaps again my ‘gluing’ together of components may well be done in a more elegant manner.
The first thing to do when trying to use when working with Excel as opposed to working with just Excel workbooks and worksheets is to determine if Excel is actually installed on the relevant PC and, if it is, the version of Excel as MS have changed some of the parameters that you need to pass to Excel with changes in versions.

Obviously the best place to test for the existence of Excel is in the application startup code. To do this I add a TExcelApplication (on the servers tab of Delphi) to the main form for the app and try to connect this component to Excel. If it succeeds, that’s great, if not, then a warning message can be provided to the user and flags set to restrict further coding from trying to use Excel functionality.
Looking at the TExcelApp component, we can see that it has very few properties that are displayed at design time in the Object Inspector. They are
AutoConnect, AutoQuit, ConnectKind, Name, RemoteInstance and Tag. The first 4 are the most important initially.

AutoConnect – instructs this component to connect to Excel when the application runs and – AutoQuit – naturally closes the connection to Excel when the app is closed. I think that it’s much better for the user and for your control over the application if you determine when connections to Excel are opened and closed so I always leave this as false.

Ignoring the name property which I think you can all work out what it does, that leaves us with the ConnectKind.

The options available for ConnectKind are :

ckAttachToInterface

ckNewInstance

ckRemote

ckRemoteInstance

ckRunningorNew

For me, the important thing to decide is whether to use the ‘New Instance’ or the ‘Running or New’ instance option.

Do a demo using Task Manager by changing the properties of XLApp and running app.

Using New Instance will – as the name implies – always start a new instance of Excel. Using ‘Running or New’ will either connect to an already running Excel or, if one is not running, start a new instance of Excel.

Knowing the type of client you are developing for, what they regularly use as applications and the type of systems they have obviously helps here. The reasons are that if you develop your application to save and close Excel workbooks and then to close Excel (not just the workbooks), then it helps to know whether the user is already running Excel and has some workbooks open. Having your app close down ‘their’ running Excel doesn’t sound like a recipe for good client-developer relations.
Choosing ‘New Instance’ is obviously therefore perhaps a better option as long as their systems aren’t too old with little memory. Loading a new instance of Excel keeps your life that little simpler. By default the instance of Excel is run ‘invisibly’ – i.e. your user cannot see any element of Excel, you can amend this should you need to by setting the visible property of the TExcelApp to True at run time.

Note that IF you use a new instance and you disconnect the Excel component then IF there are no changes made to any Excel workbook, then Excel itself will quit. IF there are changes made to any underlying workbook, then Excel cannot quit as it will be trying to ask the user if they want to save the workbook. In this case you will have an invisible instance of Excel running that can only be removed via the Task Manager.
OK, now we have a connection to Excel what can we do with it.

The first thing is to ensure that your Excel application has a workbook open and the workbook has a worksheet in it.

Although the Delphi components TExcelWorkbook and TExcelWorksheet can be used, I initially found these hard to work with and instead found it easier to create these objects directly in code.

 IIndex := 1;

 XLApp.Connect;

 lcid := LOCALE_USER_DEFAULT;

 XLVerAsStr := XLApp.Version[lcid];

 ExcelVersion := StrToFloat(XLVerAsStr);

 XLApp.Workbooks.Add(xlWBatWorksheet,0);

 WorkBk := XLApp.Workbooks.Item[IIndex];

 XLConnected := True;

We can push data to it; let’s look at an example.
Here we connect to Excel, create a worksheet called ‘Test Sheet’ and push whatever is in the text box into cell A1.
To see whether it works, we can then set the visible property of the XLApp to true.

Let’s look at how this example works – and discuss how we need to check the version of Excel before pushing data into Excel. Look at the function to read Excel cells and to push data into Excel cells.
Going one step further, we can push not only data into Excel but of course we can push formulae. In the next example we set up the connection to Excel and a worksheet, then we push the contents of two edit boxes into cells A1 and B1 and in C1 we push the formula

=SUM(A1:B1)

Note the use of SUM rather than = A1 + B1.

What’s the difference? Well, back to the functions in Excel – the Sum function ignores cells that contain text and that in some circumstances is a major advantage.

If time is OK then perhaps show amending this to =A1 + B1 and then trying to push in text.
This is an important point I think to making your applications fairly bomb proof when using Excel automation. I haven’t the skill to deal with errors being sent back from Excel – they come back as some form of variant error whatever that is – BUT I can do my best to prevent errors coming back at all.

We can do this in one of two ways

1. Prevent data of the wrong sort being pushed into Excel in the first place

2. Prevent Excel from generating errors

The first means doing an awful LOT of work in more complex examples where perhaps you are sending lots of data into Excel OR where you have to check the relative values of data before sending the data into Excel. The second method is easier I believe by implementing Excel’s own error validation techniques.

Let’s look at an example of this.

In this example we are going to use the DB function in Excel which takes the initial value of an item, the depreciation value, the life of the item and calculates the depreciation in any given period.

However if we look at the DB function in Excel first (get Excel going and set it up) then we can see that the function returns errors if for instance the period is greater than the life of the item. We therefore need to trap this from being sent back to our application by using the Excel ISError() function.
In Excel we would write this by doing:

IF (IsError(calc), what do we do if in error, what do we do when not in error)) and therefore we just need to push this formula from our app into Excel.

Formatting of data.
One of the advantages of Automation is that you can control the formatting of data in Excel from your app. However, unless there is something I am doing wrong, this DOES not affect the value returned to your application. So for instance setting the format of a cell to number format with 2 decimal places doesn’t seem to have any impact upon the value returned through Automation. So IF we are displaying values back in our application, then we need to do the formatting in that application.
The use of Value as opposed to Value2 seems to be the key here BUT I haven’t found out how to use value with Excel version > 10.

Calculated Fields

There is no reason NOT to have Excel perform the calculations when any application database calculated fields need calculating. In the next example we can see that each traditional data retrieved from a SQL database has a calculated field – amazingly called depreciation – and we can set the OnCalc handler to call the Excel DB function.

Connecting to Existing Workbooks and Saving Workbooks
Of course what we have done so far is use functionality in Excel to ‘enhance’ our Delphi application.

We can also use Automation to enhance the facilities for the end user by perhaps creating a workbook for the end user by sending data to Excel and formatting it, saving and then closing the workbook.
Let’s use the data held in this car table to populate a new workbook. We can use the same syntax as before to create a new workbook and worksheet and then use the range or cell properties of the worksheet object to populate the worksheet.
I have separated out the steps that you would typically go through in your code so that we can look at them individually but they would be:

1. Create the empty workbook.

2. Push the data and formulae to the workbook (remember you can use the RC[x],[y] method for formulae)

3. Apply cell or range formatting

4. Save the workbook

5. Close the connection to Excel and shut Excel down.

OLE Containers
The last example of mine for including Excel is to offer Excel functionality directly with an OLE Container and either pasting in a blank workbook, where the end user may want some Excel functionality OR a designed and pre-formatted Excel workbook where you give them more purposeful yet restricted functionality.

Summary

Excel and the other office applications can make your life that little easier when it comes to offering some functionality in your applications. Working with Excel workbooks and the data they contain also adds more possibilities for solutions.
I hope what you take away from this session is the confidence to use this integration in your applications if ever needed.

Many thanks for listening.

Anyone for Helicopters?

See Presentation first, then by clicking on the ReadExcel button

Let’s have a look at how Excel presents us with workbook data

Added mouse down to read the relevant range or sheet name

Introduction, reasons for doing it

Not new

Practical, Delphi skills low, fixer

Model planes that don’t crash

Helis

Gyros, batteries

Using components without inside knowledge

Syntax is hard!

Perhaps better way to glue components together

Determine if Excel installed on relevant system

App startup code, try to connect to TExeclApplication

Design time properties, set auto’s to false

Available values of ConnectKind

RunningorNew OR

New Instance

Default connection to Excel runs Excel ‘invisibly’

Use Task Manager to see one or more Excel’s running

ID newInstance and you disconnect and no changes made to Excel workbook, then Excel quits.

Create the workbook and worksheet objects in code, get the Excel version and set any flags in your app

Push data into cell A1 using the correct format for value/value2

Push formulae in using either of the A1 or RC reference methods

Always try and use Excel functions that will not generate errors or handle the errors themselves

Try to make your apps bombproof as you do normally letting Excel handle the errors

Explain the DB function and explain when it can generate errors, checking all the data before pushing it into Excel would be hard, so use Excel IsError func

Format data through Automation

Use Excel for calculated database fields

Create fully functional workbooks and save them

Practical Use of Excel

Read the powerpoint presentation for the first couple of slide for the WHY and WHY NOT

Mention office 2003, d7 and not sure about Vista and 2007

Powerpoint, introduce 2 methods

Mention Zarko Gajic

DDE – ooops, really Automation

Writing for specific clients I know what systems and software they have and can write appropriately, for you, this may not be as easy

Knowing the type of client helps here, are they in Finance, hence may have Excel open all the time

OLE Containers

